Incremental Clustering for Trajectories

Zhenhui Lif Jae-Gil Leé Xiaolei Lif Jiawei Har

t Univ. of lllinois at Urbana-Champaigfzli28, han} @illinois.edu
§ 1BM Almaden Research Center, leegj@us.ibm.com
 Microsoft, xiaoleil@microsoft.com

Abstract. Trajectory clustering has played a crucial role in data analysis since
it reveals underlying trends of moving objects. Due to their sequentiatejatu
trajectory data are often receivattrementally e.g., continuous new points re-
ported by GPS system. However, since existing trajectory clusteringitalgsr
are developed for static datasets, they are not suitable for incremerstring
with the following two requirements. First, clustering should be procesied e
ciently since it can be frequently requested. Second, huge amountgeaftory
data must be accommodated, as they will accumulate constantly.

An incremental clustering framework for trajectoriésproposed in this paper.
It contains two parts: online micro-cluster maintenance and offline relaster
creation. For online part, when a new bunch of trajectories arrives$, gajec-
tory is simplified into a set of directed line segments in order to find clusters of
trajectory subparts. Micro-clusters are used to store compact suesnodsimi-
lar trajectory line segments, which take much smaller space than raw tragscto
When new data are added, micro-clusters are updated incrementalfletd tiee
changes. For offline part, when a user requests to see currentriciggsult,
macro-clustering is performed on the set of micro-clusters ratherchaatl tra-
jectories over the whole time span. Since the number of micro-clusterslfesm
than that of original trajectories, macro-clusters are generated efficte show
clustering result of trajectories. Experimental results on both syntheticeal
data sets show that our framework achieves high efficiency as weiljaslus-
tering quality.

1 Introduction

In recent years, the collection of trajectory data has becioiereasingly common. GPS
chips implanted in animals have enabled scientists to titaek study objects as they
travel. RFID technology installed in vehicles has enabitaffit officers to track road

traffic in real-time. With such data, trajectory clusteriag very useful task. It discovers
movement patterns that help analysts see overall trentig itnd@jectories. For example,
analysis of bird feeding and nesting habits is an importask.tWith the help of GPS,
scientists can tag and track birds as they fly around. Suchkitig devices report the

The work was supported in part by the U.S. National Science Foundztmts 11S-08-42769
and 11S-09-05215, and a grant from the Boeing company. Any op@ifindings, and conclu-
sions expressed here are those of the authors and do not necasskdlythe views of the
funding agencies.

trajectories of animals on a continual bagisy, every minute, every hour). With such
data, scientists can study the movement habis {rajectory clusters) of birds.

One important property with tracking application is therementalnature of the
data. The data will grow to be in huge size as time goes by. i@enthe following real
case of moving vehicle data which is used in experiment atialn.

Example 1.A taxi tracking system tracks the real-time locations of entiran 5,000
taxis in San Francisco. With the sensor installed on each tfzex system is able to
receive information about current location(longitude #etitude) of each taxi with a
precise timestamp. The system accumulates the updatededatya minute. After a
single day, the system will collect totally 7.2 million pténwith 1,440 points for each
taxi. After a week, the number of points will be accumula@&®.4 million points.

For static data sets, there are many existing trajectostaling algorithms devel-
oped. However, to the best of our knowledge, none of thenetadyat solving cluster-
ing problem for incremental huge trajectory data as poiotgdn Example 1. Facing
continuous data, previous methods will take long time tdeet all the data and re-
compute the trajectory cluster over the whole huge datdfdiie users want to track
real-time clusters every hour, it is almost impossible tesficomputation within the
time period threshold, especially considering the data stil keeps growing every
minute. Therefore, trajectory data must be accommodatzdrimentally.

An important point to notice is thatew data will only affect local shiftdt will
not have big influence on clusters in the areas which are fay dwm the local area
of new data. So, a more sensible approach to accommodateanugeant of data is
to maintain and adjusticro-clustersof the trajectory data. Micro-clusters are tight
clusters over small local regions. Due to their small sizesy are more flexible to
changes in the data source. Yet they still achieve the dksjrace savings of clusters by
summarizing extremely similar input trajectories. Thesgpprties make them suitable
for incremental clustering.

This work proposes aimcremental Tajectory Qustering using Ntro- and Macro-
clusteringframework called TCMM. It makes the following contribut®iowards an
incremental trajectory clustering solution. First, tcd@ies are simplified by partition-
ing into line segments to find the clusters of sub-trajeewrSecond, micro-clusters of
the partitioned trajectories are computed and maintainegmentally. Micro-clusters
hold and summarize similar trajectory partitions at verg faranularity levels. They
use very little space and can be updated efficiently. Andlfinalicro-clusters are used
to generate the macro-clustare(final trajectory clusters).

The TCMM framework is truly incremental in the sense that naclusters are
incrementally maintained as more and more data are recéescuse their granularity
level is low, they can adjust to all types of change in the trgata. The number of
micro-clusters is much smaller than that of the originalitgata. When the user wants
to compute the full trajectory clusters, micro-clusters@mbined together to form the
macro-clusters in higher granularity level.

The rest of this paper is organized as follows. Section 2 &tlsndefines the prob-
lem and gives an outline of the TCMM framework. Sections Jidl 8.2 discuss the
micro-clusters and the macro-clusters, respectivelyeBrgents are shown in Section
4. Related work is analyzed in Section 5. Finally, the papectudes in Section 6.

2 General Framework

2.1 Problem Statement

The data to be studied in this work will be in the context ofrasremental data source
That is, new batches of trajectory data will continuouslyfdxinto the clustering al-
gorithm (e.g, from new data recordings). The goal is to process such dat@rduce
clusterancrementallyandnot have to re-compute from scratch every time.

Let the input data be represented by a sequence of time-sthtngjectory data
sets(I,, I1,, .. .) where eacHy, is a set of trajectories being presented at tim&ach
I, = {TR1,TRs,...,TR,,,} Where eaclT'R; is a trajectory. A single trajectory
TR; is often represented as a polyline, which is a sequence oleobed line segments.
Itcan be denoted &8R; = p1pa . . . pien,,» Where each poin; is a time-stamped point.
TR; can be further simplified to derive a new polyline with feweiris while its devi-
ation from the original polyline is below some thresholde®implification techniques
have been studied extensively in previous work [11, 5] . Ia gfaper, we use the sim-
plification technique in our previous paper [11]. Simplifiedjectory is represented as
Tlem”“de =IL1Ly...L,, whereL; andL,., are connected directed line segments
(i.e., trajectory partitions).

Given such input data, the goal is to produce a set of clustets {Cy,Cs, ...,
Che}- A clusteris a set of directed trajectory line segme@ts= {L1, Lo, ..., Li, },
whereL,, is a directed line segment from certain simplified trajecBiR: 7' icd at
certain time stamp;. Because we do clustering on line segments rather than wrasle
jectories, the clusters we find are actually sub-trajecttugters, which are the popular
paths visited by many moving objects.

2.2 TCMM Framework

Figure 1 shows the general data flow of TCMM. Thexis represents the progress
of time and they-axis shows the progress of data processing. As the figuisriiites,
input data are received continuously.

The first step is micro-clustering. Because there is an tefitdta source, it is im-
possible to store all the preprocessed input data and cenghusters from them on
request. To solve this problem, this work introduces thecephoftrajectory micro-
clusters The term “micro” refers to the extreme tightness of thetetss The idea is to
only cluster at very fine granularity. Hence, the number afrorclusters is much larger
than that of final trajectory clusters. Figure 1 shows theroa@iusters in the second
row. Section 3.1 will discuss them in detail.

The second step is macro-clustering, which will be disadisseletail in Section
3.2. Compared to the micro-clustering step, which are gablebnstantly as new data
is received, the macro-clustering stepidy evoked after receiving the user’s request
of trajectory clusters. This step will then use the micrastérs as input.

Time

Data Flow
Simplified
i | A AL

Micro-
Clustering

Macro-
Clustering

Fig. 1. The Framework

3 Trajectory Clustering using Micro- and Macro-clustering

3.1 Trajectory Micro-Clustering

As newly arrived trajectories will only affect local clusiteg result, trajectory micro-
clusters (or just micro-clusters) are introduced here tmtai a fine-granularity clus-
tering. Micro-clusters (defined in Section 3.1) are muchemestrictive than the final
clusters in the sense that each micro-cluster is meant toraitl and summarize the
information of local partitioned trajectories. Micro-shering will enable more efficient
computation of final clusters comparing with computatiamiroriginal line segments.

Algorithm 1 Trajectory Micro-Clustering

1: Input:New trajectorieds. ..., = {TR1,TRs,--- ,TRnrr} and existing micro-clusters
MC ={MC,MCs,...,MCy,,.}.

2. Parameter. d,ax

3: Output: UpdatedM C' with new trajectories inserted.

4: Algorithm :

5: for everyTR; € Ii.,,ren, dO

6

7

8

for everyL; € TR; do
Find the closest/ Cy, to line segmenL; /* Section 3.1 */
if distancéL;, M Ck) < dma then

9: Add L; into M C}, and updaté\/ C}, accordingly
10: else
11: Create a new micro-clust@f C.c., for L;;
12: if size of M C exceeds memory constraithien
13: Merge micro-clusters in/C /* Section 3.1 */

Algorithm 1 shows the general work flow of generating and r@iing micro-
clusters. It proceeds as follows. After a batch of new ttajées arrive, we compute the
closest micro-clustei! Cy, for each line segmertt; in every trajectory. If the distance

betweenl; and M C}, is less than a distance threshodil,(..), L; will be inserted into
MC}.. Otherwise, a new micro-clustéd C,,.,, will be created forL;. If the creation of
the new micro-cluster results in the overload of the totahbar of micro-clusters, some
micro-clusters will be merged. The rest of this section uliscthese steps in detail.

Micro-Cluster Definitions Each trajectory micro-cluster will hold and summarize a
set of partitioned trajectories, which are essentiallg Begments.

Definition 1 (Micro-Cluster). A trajectory micro-cluster (or micro-clustefjr a set
of directed line segments,, Lo, - -- , L is defined as the tupleN, LScenter, LSq,
LSiengthy SScenters S50, SSiengtn), WhereN is the number of line segments in the
micro-cluster,LScenter, LS, and LSjc,4¢1, are the linear sums of the line segments’
center points, angles and lengths respectivlly.c,icr, SS9, and SSjenq:n are the
squared sums of the line segments’ center points, anglekeagths respectively.

The definition of trajectory micro-cluster is an extensidéthe cluster feature vector
in BIRCH[14]. The linear suni.S represents the basic summarized information of line
segments(e., center point, angle and length). The square sifhwill be used to calcu-
late the tightness of micro-cluster which will be discusse8ection 3.1. The additive
nature of the definition makes it easy to add new line segnietdghe micro-cluster
and merge two micro-clusters. Meanwhile, the definitiondsigned to be consistent
with the distance measure of line segments in Section 3.1.

Also, every trajectory micro-cluster will haverapresentative line segmems the
name suggests, this line segment is the representativedmraent of the cluster. It is
an “average” of sorts.

Definition 2 (Representative Line Segment)The representative line segmeat a
micro-cluster is represented by the starting pairgnd ending point. s ande can be
computed from the micro-cluster features.

cos sin 6
len, center, —

s = (center, — len)

cos

sin
e = (center, + len, centery + Tlen)
wherecenter, = LScenter, /N, centery = LScenter, /N, len = LSjengen/N, and
6 = LSy/N.

Figure 2 shows an example. There are four line segments mitlre-cluster, which
are drawn in thin lines. The representative line segmertefrticro-cluster is drawn in
a thick line.

Creating and Updating Micro-Clusters When a new line segmei; is received, the
first task is to find the closest micro-clustgfC}, that can absorld.; (i.e, Line 7 in
Algorithm 1). If the distance betweeh; and M CY, is less than the distance threshold
dmaz, Li 1S then added td/ C, and M C}, is updated accordingly; if not, a new micro-
cluster is created.e., Line 8 to 11 in Algorithm 1). This section will discuss hovetie
steps are performed in detail.

d

H
center |
H

— Input Line Segment
=) Representative Line Segm

: o
4 S; H—;l : L, center e
It ; 2

Py P

Fig. 2. Representative Line Segment Fig. 3. Line Segments Distance

Before proceeding, the distance between a line segment andre-cluster is de-
fined. Since a micro-cluster has its representative linenseg, the distance is in fact
defined between two line segments, which is composed of du@p@onents: the center
point distancedc.nt.r), the angle distancelf) and the parallel distancd () . The dis-
tance is adapted from a similarity measure used in the arpatt#rn recognition [10],
which is a modified line segment Hausdorff distance. Thelamdiistance measure is
also used in [11]. Different from [11], we use componépt,;., instead ofd, . The
reason to choosé....., is because it is a more balanced measure betwgemdd
and it is easier to adapt the concept of extent, which williteoduced in Section 3.1.

Let s; ande; be the starting and ending points bf; similarly for s; ande; with
L;. Without loss of generality, the longer line segment isgissil toL,;, and the shorter
one toL;. Figure 3 gives an intuitive illustration of the distancedtion.

Definition 3. The distance function is defined as the sum of three component
dist(Li, L;) = deenter(Li, Lj) + do(Ly, L;) + dy(Li, L;)
The center distance:
deenter(Li, Lj) =|| center; — center; || ,
where|| center; — center; || is the Euclidean distance between center points,aind
%ﬁe angle distance:

oy LIE | xsing6), 00 < 6 < 90°
do(Ls, Lj) = { 1Ly |, 90° < 6 < 180°

where|| L; || denote length of;, #(0° < # < 180°) denote the smaller intersecting
angle betweerL; and L;. Note that the range df is not [0°, 360°) because is the
value of smaller intersecting angle without considering tlirection.

The parallel distance:

dH (Li7 Lj) = min(l”h ZHQ),

wherel||; is the Euclidean distances pf to s; and/, is that ofp, to e;. p, andp. are
the projection points of the pointg ande; onto L; respectively.

After finding the closest micro-clustev/Cy, if the distance fromi; is less than
dmaz, L; is inserted into it, and the linear and square suma/i@’;, are updated ac-
cordingly. Because they are just sums, the additivity priypgpplies and the update is
efficient. If the distance between the nearest micro-chastd L; is bigger thani,,, .., a
new micro-cluster will be created fdr;. The initial measures in the new micro-cluster
is simply derived from line segmeldt; (i.e., center point, theta, and length).

Merging Micro-Clusters In real world applications, storage space is always a con-
straint. The TCMM framework faces this problem with its noiarlusters as shown in
Line 12 to 13 of Algorithm 1. If the total space used by mictosters exceeds a given
space constraint, some micro-clusters have to be mergedisfyshe space constraint.
Meanwhile, if the number of micro-clusters keeps increggtrwill affect the efficiency
of algorithm because the most time-consuming part is fintheqiearest micro-cluster.
And what is most important, it may be unnecessary to keealiticro-clusters since
some of the micro-clusters may become closer after sevanalds of updates. There-
fore, the algorithm demands merging close micro-clustérsmnecessary to speed up
efficiency and save storage. Obviously, pairs of microtelssthat contain similar line
segments are better candidates for merging because the nesigts in less informa-
tion loss.

One way to compute the similarity between two micro-clusisrto calculate the
distance between the representative line segments of gr@-eiusters. Though intu-
itive, this method fails to consider the tightness of thermiclusters. Figure 4 shows

. R Loose micro-cluster C
Tight micro—cluster A

Merge Merge
g e >

Tight micro—cluster B Loose micro-cluster D

(a) Merging tight micro-clusters (b) Merging loose micro-clusters

Fig. 4. Merging micro-clusters

an example that how tightness might effect distance betw&emnicro-clusters. Fig-

ure 4(a) shows two tight micro-clusters and the micro-euafter merging them. Fig-

ure 4(b) shows the case for two comparatively loose micustelrs. We can see that
micro-clusterA and micro-cluste€ have same representative line segments, and so do
micro-clustersB and D. Thus the distance between micro-clusteand B should be

the same as that between micro-clustésnd D if we measure the distance only using
representative line segments. In this case, the chancergemecro-clustersi and B

is equal to that of merging micro-clustefsand D. However, we actually prefer merg-
ing micro-clusters” and D. There are two reasons: on one hand, if both micro-clusters

are very tight, they may not be good candidates for mergicgurge it would break that
tightness after the merge. On the other hand, if they arelbo#e, it may not do much
harm to merge them even if their representative line segsramet somewhat far apart.
Hence, a better approach would be to considegettientof the micro-clusters and use
that information in computing the distance between miduster.

In the following parts, we will first introduce the way to cootp micro-cluster
extent, then give definitions of the distance between mitusters with extent infor-
mation. Lastly, we will discuss how to merge two micro-cérst

Micro-Cluster Extent The extent of a micro-cluster is an indication of its tighgse
Recall that micro-clusters are represented by tuples ofdima: (N, LScenter, LSy,
LSiengthy SScenters SS9, SSiengtr), Which maintain linear and square sums of center,
angle and length. The extent of the micro-cluster also oefithree padztent cpier,
extenty andextenti.nqtp, t0 measure the tightness of three basic facts of a trajectory
micro-cluster. The extents are the standard deviation ¢hktulated from its corre-
spondingL.S and.S'S. We have the following lemma from [14].

Lemma 1. Given a set of distance valueS,= (dy,ds, ...,d,). LetLS =3%". | d;,
andSs =Y,_, ,.(d;)?. The standard deviation of the distancesis- / "*55(£5)°,

Using Lemma 1, we give a formal definition for extent of a mictoster:

extenty, = \/(N x SSy — LS2)/N?2

where symbok representsenter, 6, orlength and N is the number of line segments
in the micro-cluster.

(a) Center extent (b) 6 extent (c) Length extent

Fig. 5. Micro-Cluster Extent

To give an intuition of extent concept, Figure 5 shows an edarof extent cpier,
extenty andextent;eng:n,. Figure 5(a) states that “most” center points of the line seg
ments stored in this micro-cluster are within the circle aflius extent cpnier. Fig-
ure 5(b) illustrates that “most” angles vary within a rande:etenty and Figure 5(c)
reflects the uncertainty of length.

Micro-Cluster Distance with ExtenWith the extents properly defined, we can now
incorporate them into the distance function. Recall thatitttention of extent was to
adjust the distance function based on the tightness of reicisters. For instance, let

d, 2 be the distance between micro-clustéf€”; and M C, according to the distance
function defined previously. If these two micro-clusters aoth “tight” (i.e., having
zero or very small extent), theh , indeed represents the distance between them. How-
ever, if these two micro-clusters are both “looseg(having large extent), then their
“true” inter-cluster distance should actually ssthand, ». This is because the line
segments at the borders of the two micro-clusters are likebe much closer thag, .

With respect to merging micro-clusters, this allows looseroiclusters to be more
easily merged and vice-versa. The adjustment of the distAnection using extent is
relatively simple. Whenever possible, extent is used togedie distance between the
representative line segments of micro-clusters.

(a) Center distance with extent (b) Parallel distance with extent

(c) Angle distance with extent

Fig. 6. Line Segments Distance with Extent

To measure the distance between micro-cluséed micro-clustey, it is equivalent
to measure the distane&(L;, L}) between the representative line segmedrjtsvith
extent’ andL} with extent’. Figure 6 shows an intuitive example of distance measure
with extent. For example, in Figure 6(a), the distance betvtbe centers is the distance
between representative line segments minus the centertexiétwo micro-clusters.
The formal definition is given as follows based on the modiiicaof distance measure
between line segmentsé., Definition 3). To avoid the redundancy in presentation, the
symbols explained in Definition 3 are not repeated in Debnid.

Definition 4. The distance betweebh; and L* contains three parts: center distance
d; angle distancel}, and parallel distancelﬁ.

center?
dist(L}, Lj) = deenter (L], Lj) +do(L7, L;’f) +dy (L7, Lj)
The center distance:

denter (L7, L) = max (O, lcenter; — center;|| — extentl, e, extentcenm)

The angle distance:

0*=0-— (extentg + extenté)
wire e J L xsin(6*), 0° < * < 90°

The parallel distance:

d*| (L;k7 Lj) = max (07 min(th ZHQ) - (extent?ength + extent{ength)/2)'

—— iecti j
whereeztent;,, ., is the projection otztent;,,, ,, ONtOL].

Note that the distances defined between two representiai/edgments with extent are
smaller than those defined between two original ones. Andlistance may be equal
to zero when there is an overlap between representativedigmments with extent.

Merging Algorithm The final algorithm of merging micro-clusters is as followsven
M micro-clusters, the distance between any two micro-ctassecalculated. They are
then sorted from the most similar to the least similar. Thetsomilar pairs are the best
candidate for merging since merging them result in the @stunt of information loss.
They are merged until the number of micro-clusters sattsfygiven space constraints.

3.2 Trajectory Macro-Clustering

The last step in the TCMM framework produces the overalettjry clusters. While
micro-clustering is processed with a new batch of data came®macro-clustering is
evokedonly whenit is called upon by the user.

Since the distance between micro-clusters is defined in Defird, it is easy to
adapt any clustering method on spatial points. We simply neeeplace the distancce
between spatial points with the distance between micrstets. In our framework, we
use density-based clustering [7], which is also used in TRAE [11]. The clustering
technique in macro-clustering step is the same as the dlugtggorithm in TRACLUS.
The only difference is that macro-clustering in TCMM is mered on the set of micro-
clusters rather than the set of trajectory partitions asRATLUS. The micro-clusters
are clustered through a density-based algorithm whiclodess maximally “density-
connected” components, each of which forms a macro-cluster

4 Experiments

This section tests the efficiency and effectiveness of tlepgeed framework under
a variety of conditions with different datasets. The TCMMrfrework and the TRA-
CLUS [11] framework are both implemented using C++ and cdedpivith gcc. All
tests were performed on a Intel 2.4GHz PC with 2GB of RAM.

(a) Micro-clusters at snapshot 1 (b) Micro-clusters at snapshot 2

Fig. 7. Micro-clusters from synthetic data

4.1 Synthetic Data

As a simple way to quickly test the “accuracy” of TCMM, synibetrajectory data
is generated. Objects are generated to move along prevdeést paths with small
perturbations € 10% relative distance from pre-determined points)% trajectories
are random noises added to the data. Figure 7 shows the oésuttremental micro-
clustering at two different snapshots. Figure 7(a) showdrajectories in gray; one can
clearly see the trajectory clusters. The extracted mitusters are drawn with red/bold
lines; they match the intuitive clusters. Figure 7(b) shitivestrajectories and extraction
results for a later snapshot. Again, they match the intiithusters.

4.2 Real Animal Data in Free Space

Next, clusters are computed from deer movement dataYear 1995. This data set
contains 32 trajectories with abo2®, 000 points in total. The dataset size of animal
is considerably small due to the high expense and techroabdifficulties to track
animals. But it is worth studying animal data because thedtaries are in free space
rather than on restricted road network. In Section 4.3, théurevaluation on a much
larger vehicle dataset containing oien00 trajectories will be conducted.

To the best of our knowledge, there is no any other increnh&rajactory clustering
algorithm. So the results of TCMM will be compared with TRAGSE [11], which does
trajectory clustering over the whole data set. Since matusters in TCMM summarize
original line segments information with some informatioss, the clustering result on
micro-clusters might not be as real as TRACLUS. So the dlustilt from TRACLUS
is used as a standard to test the accuracy of TCMM. Meanvitigedmportant to show
the efficiency against TRACLUS while both results are simila

We adapt performance measure, sum of square distance (B&QluStream [1]
to test the quality of clustering results. Assume that tlaeeea total of n line segments
at the current timestamp. For each line segnigntve find the centroidi(e., represen-
tative line segment)’,, of its closest macro-cluster, and computé.;, C1,,) between
L; andCr,. The SSQ at timestamp is equal to the sum4fL;, C7,) and the average
SSQisSSQ/n.

! http://www.fs.fed.us/pnwi/starkey/data/tables/

50 [TCMM ——
TRACLUS wrroderee

TCMM e
5000 [TRACLUS s

4000 10 f

3000

Average SSQ
Running Time (seconds)

2000 |
05 /—‘
1000 1
4 ooy 0.1k . .
6900 11718 16029 20064 6900 11718 16029 20064
Number of Trajectory Points Loaded Number of Trajectory Points Loaded
Fig. 8. Effectiveness Comparison (Deer) Fig. 9. Efficiency Comparison (Deer)

As shown in Algorithm 1, there is only one parametgy,, in micro-clustering step
and we set it td 0. The parameter sensitivity is analyzed and discussed itidBet.4.
For macro-clustering and TRACLUS, they use the same pasmetnd MinLns.
Here,c is set to50 and MinLns is set tos.

Figure 8 shows the quality of clustering results. Compauviity TRACLUS, the
average SSQ of TCMM is slightly higher. In the worst case giferage SSQ of TCMM
is 2% higher than TRACLUS. But the processing time of TCMM is sfgintly faster
than TRACLUS. To process all tfa, 000 points, TCMM only take$.7 seconds while
TRACLUS takest3 seconds. The reason is that it is much faster to do clusteriag
micro-clusters rather than over all the trajectory pamti§. With the deer dataset, at
last, the number of trajectory partitions (3390) is muchertbian the number of micro-
clusters (324) in total.

4.3 Real Traffic Data in Road Network

Real world GPS recorded data from a taxi company in San FBamés used to test
the performance of TCMM. The data set is huge and keeps ggoasrtime goes by.
It contains 7,727 trajectorieg{0, 000 points) of taxis as they travel around the city
picking up and dropping off passengers.

Figure 10 shows the visual clustering result of taxi datestkbw and second row
show the micro-clustersif, .. setto 800) and macro-clusteesget to 50 andV/inLns
set to 8). Last row shows cluster result from TRACLUS. Timéd 0and 2 correspond
to the timestamps respectively when 52317, 74896, and 98a@&tory points have
been loaded. As we can see from Figure 10, the results fromM@kd TRACLUS
are similar except very few differences. The similar cltisge performance is further
proved in Figure 11, where the average SSQ of TCMM is onhhdlychigher than that
of TRACLUS (2% higher in worst case and4% higher on average).

Regarding to efficiency issue, Figure 12 shows the time ribtmprocess the data
in 4 increments with TCMM and TRACLUS. Compared to previoasadsets, TRA-
CLUS is substantially slower this time due to the larger dagasize. To process all
the data, TRACLUS takes about 4.6 hours while TCMM only ta&esut 7 minutes
to finish. This is because the number of trajectory part#ti¢2,600) is much larger
than the number of micro-clusters (2,013). It means that MOMmuch more efficient
than TRACLUS as data set is getting bigger, while at the same, the effectiveness
remains the same as TRACLUS.

Micro Clusters

Macro Clusters }

- 0 0

Time O Time 1
Fig. 10. Taxi Experiment

TCMM oz

& TCMM —+—
. | & |TRACLUS - e eenmmereee
5000 [TRACLUS 2 10000 [TRACLUS e
g 4000 g | s
o s | T
o 3000 0% g | e
8 £ 1000
g 20000 E
000 |] : |
o5 555 4 4
0 S B 100 . .
24210 52317 74896 98002 24210 52317 74896 98002
Number of Trajectory Points Loaded Number of Trajectory Points Loaded
Fig. 11. Effectiveness Comparison(Taxi) Fig. 12. Efficiency Comparison(Taxi)

4.4 Parameter Sensitivity

The micro-clustering step of TCMM has the nice property thainly requires one
parameterd,, ... A large d,,.,. builds micro-clusters that are large in individual size
but small in overall quantity, whereas a small,, has the opposite effect. If we set
dmae = 0, TCMM is actually TRACLUS because each line segment wiliria micro-
cluster itself. Then the macro-clustering applied on midrcsters is exactly the one
applied on original line segments. Therefore, the smalerdt,,.. is, the better the
quality of clustering should be but the longer processingetis needed. At the same
time, if we setd,,.,. larger, the algorithm runs faster but loses more infornmatio
micro-clustering. Hence there is a trade-off between &ffecess and efficiency.

We use taxi datasets to study the parameter sensitivity oflgorithm. Figure 13
and Figure 14 show the performance of TCMM with differdpt,,.. We can see that
whend,,.., = 600, the average SSQ is closer to that of TRACLUS, which shows
that it has more similar performance as TRACLUS. But it ald@s longer time to do
clustering whenl,,,,,, = 600. However, comparing with TRACLUS, the time spent on
incremental clustering is still significantly shorter.

TCMM(d_max = 600) —+—
TCMM(d_max = 800) -
TCMM(d_max = 1000) -
TRACLUS -

TCMM(d_max=600) X=xxxx
5000 | _TCMM(d_max=800) =wzs
TCMM(d_max=1000)
4000 TRACLUS s

10000 -
3000

2000 1000 |

Average SSQ
Running Time (seconds)

1000

Ri 0 - : . .
24210 52317 74896 98002 24210 52317 74896 98002
Number of Trajectory Points Loaded Number of Trajectory Points Loaded

Fig. 13. Effectiveness withl,,, 4. Fig. 14.Efficiency withdnaq

5 Related Work

Clustering has been studied extensively in machine legiamia data mining. A number
of approaches have been proposed to propest data in various conditions , such as
k-means [12], BIRCH [14, 3] and OPTICS [2]. The micro-clustgrstep in TCMM
share the idea of micro-clustering in BIRCH [14]. HoweveliRBH [14] cannot han-
dle trajectory clustering. The clustering feature in TCMEktbeen extended to exactly
describe a line-segment cluster by including three kindefofrmation. The data bub-
ble [3] is an extension of the BIRCH framework and introduttessidea of the extent.
TCMM also uses the extent in its micro-cluster, but the diéfinihas been changed to
accommodate trajectories.

Trajectory clustering has been studied in various conté&xdfneyet al. [9, 4, 8]
proposes several algorithms for model-based trajectosteting. TRACLUS [11]isa
trajectory clustering algorithm which performs densigsbd clustering over the entire
set of sub-trajectories. However, all of these algoritharsnot efficiently handlecre-
mentaldata. They are not suitable for incremental data sinceetlsistre re-calculated
from scratch every time.

CluStream [1] studies clustering dynamic data streams. r@ethod adapts its
micro-/macro-clustering framework for trajectory dateowever, our method so far
handles only incremental data but not trajectory strearis. i because sub-trajectory
micro-clustering has to wait for nontrivial number of newirge accumulated to form
sub-trajectories, which needs addition buffer space aritthgdime. Moreover, the pro-
cessing of sub-trajectories is more expensive and additimocessing power is needed
for real time stream processing. Thus, the extension of mméwork for trajectory
streaming left for future research.

Esteret al. [6] proposes the Incremental DBSCAN algorithm, which is atee-
sion of DBSCAN for incremental data. Here, the final clustans directly updated
based on new data. We believe our two-step process is moiglélaince any cluster-
ing algorithm can be employed for macro-clustering, whetearementalDBSCAN is
dedicated to DBSCAN. More recently, Sacharidisal. [13] discusses the problem of
online discovering hot motion. The basic idea is to delegatt of the path extraction
process to objects, by assigning to them adaptive lightutditiers that dynamically
suppress unnecessary location updates. Their problenffésedit from ours in two
ways: first, they are trying to find recent hot paths whereassters target at whole

time span; and second, they require the objects in a movirgieslto be close enough
to each other at any time instant during a sliding window ofilivet units but we are
more from geometric point of view to measure the distance/den trajectories.

6 Conclusions

In this work, we have proposed the TCMM framework for incremaé clustering of
trajectory data. It uses a two-step process to handle iremtahdatasets. The first
step maintains a flexible set of micro-clusters that is wpdlatontinuously with the
input data. Micro-clusters compress the infinite data sotoa finite manageable size
while still recording much of the trajectory informationh& second step, which is on-
demand, produces the final macro-clusters of the trajestarsing the micro-clusters
as input. Compared to previous static approaches, the TCiividwork is much more
flexible since it does not require all of the input data at ofit® micro-clusters provide
a summary of the trajectory data that can be updated eadityamy new information.
This makes it more suitable for many real world applicaticargrios.

References

1. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework festering evolving data
streams. I'WLDB'03.

2. M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. OPTICR&ieting points to identify
the clustering structure. IBIGMOD’99

3. M. M. Breunig, H.-P. Kriegel, P. Kiger, and J. Sander. Data bubbles: Quality preserving
performance boosting for hierarchical clusteringSIGMOD’01

4. 1. V. Cadez, S. Gaffney, and P. Smyth. A general probabilistimémork for clustering
individuals and objects. IKDD’'00.

5. D. Douglas and T. Peucker. Algorithms for the reduction of the numibygoints required to
represent a line or its character. The Ameican Cartographet973.

6. M. Ester, H. P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incretakclustering for mining
in data warehousing environment. i.DB’98.

7. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-basedritign for discovering
clusters in large spatial databasesKDD’96.

8. S. Gaffney, A. Robertson, P. Smyth, S. Camargo, and M. Ghilbdhibistic clustering of
extratropical cyclones using regression mixture model3ebhnical Report UCI-ICS 06-02
University of California, Irvine, Jan. 2006.

9. S. Gaffney and P. Smyth. Trajectory clustering with mixtures of s=joe@ models. In
KDD’99.

10. M. K. L.J.Chenand Y. Gao. Noisy logo recognition using line sedmausdorff distance.
In Pattern Recognition2002.

11. J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: itgan-and-group framework.
In SIGMOD’07.

12. J. MacQueen. Some methods for classification and analysis of anigit&s observations.
Proc. 5th Berkeley Symp. Math. Statist, Prdb281-297, 1967.

13. D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. P@anK. Mouratidis, and
T. Sellis. On-line discovery of hot motion paths. BDBT '08

14. T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficsia clustering method for
very large databases. 81IGMOD’96

