
Trajectory Outlier Detection:
A Partition-and-Detect Framework

Jae-Gil Lee, Jiawei Han, Xiaolei Li

Department of Computer Science, University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{jaegil, hanj, xli10}@uiuc.edu

Abstract— Outlier detection has been a popular data mining
task. However, there is a lack of serious study on outlier detection
for trajectory data. Even worse, an existing trajectory outlier
detection algorithm has limited capability to detect outlying sub-
trajectories. In this paper, we propose a novel partition-and-detect
framework for trajectory outlier detection, which partitions a
trajectory into a set of line segments, and then, detects outlying
line segments for trajectory outliers. The primary advantage of
this framework is to detect outlying sub-trajectories from a tra-
jectory database. Based on this partition-and-detect framework,
we develop a trajectory outlier detection algorithm TRAOD. Our
algorithm consists of two phases: partitioning and detection. For
the first phase, we propose a two-level trajectory partitioning
strategy that ensures both high quality and high efficiency. For
the second phase, we present a hybrid of the distance-based
and density-based approaches. Experimental results demonstrate
that TRAOD correctly detects outlying sub-trajectories from real
trajectory data.

I. INTRODUCTION

An outlier is a data object that is grossly different from or
inconsistent with the remaining set of data [1]. It has been
known that “one person’s noise could be another person’s
signal.” Indeed, the outliers may be of particular interest, such
as for the detection of credit card fraud and the monitoring
of criminal activities in electronic commerce. There are many
outlier detection algorithms reported in the literature. They
can be classified into distribution-based [2], distance-based [3],
[4], [5], [6], density-based [7], [8], and deviation-based [9]
algorithms. Most of them are designed to detect outliers from
relational tuples (i.e., multi-dimensional point data).

Recent improvements in satellites and tracking facilities
have made it possible to collect a huge amount of trajectory
data of moving objects. Examples include vehicle positioning
data, hurricane tracking data, and animal movement data.
There is an increasing interest to perform data analysis over
trajectory data. Since outlier analysis is a popular data mining
task, a powerful outlier detection algorithm for trajectories is
needed urgently.

Despite its importance, trajectory outlier detection has not
been paid much attention. Knorr et al. [5] have presented
one of very few attempts. In this technique, a trajectory is
represented by a set of key features instead of a sequence of
points. That is, a trajectory is summarized by the coordinates
of the starting and ending points; the average, minimum, and
maximum values of the directional vector; and the average,
minimum, and maximum velocities. The distance function

is simply defined as the weighted sum of the difference
of these values. Then, a distance-based algorithm [3], [4],
[5] is applied to detecting trajectory outliers. This technique
compares trajectories as a whole; i.e., the basic unit of outlier
detection is the whole trajectory.

Our key observation is that comparing trajectories as a
whole, with help from the summary information, might not
be able to detect outlying portions of the trajectories. We note
that a trajectory may have a long and complicated path. Hence,
even though some portions of a trajectory show a unusual
behavior, these differences might be averaged out over the
whole trajectory.

Example 1: Consider the five trajectories in Figure 1. It is
obvious that the thick portion of a trajectory TR3 is quite
different from neighboring trajectories. However, the previous
technique [5] cannot detect this unusual behavior since the
differences are averaged out over the whole trajectory; i.e.,
the overall behavior of the trajectory TR3 is similar to those
of the neighboring trajectories. Thus, we miss this possibly
important information. �

TR5

TR1

TR4TR3

TR2

An outlying sub-trajectory

Fig. 1. An example of an outlying sub-trajectory.

Our solution is to partition a trajectory into a set of
line segments and then detect outlying line segments. This
framework is called a partition-and-detect framework. The
primary advantage of the partition-and-detect framework is
the detection of outlying sub-trajectories from a trajectory
database. This is exactly the reason why we partition a
trajectory into a set of line segments.

We contend that detecting the outlying sub-trajectories is
very useful. There are many examples in real situations. Here,
we present a possible application scenario.

Example 2: Meteorologists are trying to figure out the
cause of sudden changes in hurricane’s path [10]. Predicting
sudden changes is of prime importance since it is crucial
for issuing an evacuation order early. Hurricane Charley in

Aug. 2004 is notorious for its unexpected path (i.e., hard right
turn) and rapid intensification. Since Charley was expected to
hit the land closer to Tampa, many residents around Punta
Gorda, Fla., were caught unprepared. This sudden change can
be considered as an outlying sub-trajectory if the previous
path follows a usual pattern. Thus, detecting outlying sub-
trajectories helps reveal the cause of sudden hurricane track
changes. �

In this paper, we propose a partition-and-detect framework
for trajectory outlier detection. As indicated by its name,
trajectory outlier detection based on this framework consists
of the following two phases:

(1) The partitioning phase: Each trajectory is partitioned first
in coarse granularity and then in fine granularity. Two-
level trajectory partitioning ensures both high quality and
high efficiency. The set of trajectory partitions is provided
to the next phase.

(2) The detection phase: Outlying trajectory partitions are
detected mainly using distance, so this phase is intuitive
and efficient. Furthermore, to improve detection quality,
density is also taken into account.

In summary, the contributions of this paper are as follows:

• We propose a partition-and-detect framework for tra-
jectory outlier detection. This framework enables us
to discover outlying sub-trajectories, whereas previous
frameworks do not.

• We propose a trajectory outlier detection algorithm,
which takes advantage of both distance-based and
density-based approaches.

• We present a two-level trajectory partitioning strategy to
speed up outlier detection. Many portions of trajectories
can be pruned in a coarse-granularity level and do not
need to be inspected further.

• We demonstrate, by using various real data sets, that our
outlier detection algorithm effectively discovers outlying
sub-trajectories from a trajectory database.

The rest of the paper is organized as follows. Section
II discusses related work. Section III presents the problem
statement. Section IV defines the concept of trajectory outliers
and proposes our trajectory outlier detection algorithm. Section
V proposes a two-level trajectory partitioning strategy. Section
VI presents the results of experimental evaluation. Finally,
Section VII concludes the study.

II. RELATED WORK

A number of outlier detection algorithms have been devel-
oped for multi-dimensional points. These algorithms are classi-
fied mainly into four classes: distribution-based [2], distance-
based [3], [4], [5], [6], density-based [7], [8], and deviation-
based [9]. For our study, we briefly review only the distance-
based and density-based approaches.

(1) Distance-based approach: This approach has been orig-
inally proposed by Knorr and Ng [3], [4], [5]. “An object
O in a data set T is a DB(p, D)-outlier if at least fraction

p of the objects in T lies greater than distance D from
O.” This approach depends on the overall or “global”
distribution of a given set of data points. However, data
are usually not uniformly distributed. Thus, this approach
encounters difficulties when analyzing data with rather
different density distributions.

(2) Density-based approach: This approach has been pro-
posed by Breunig et al. [7]. An outlier is defined using
the local outlier factor (LOF) of each object, which
depends on the local density of its neighborhood. Here,
the neighborhood is defined by the distance to the MinPts-
th nearest neighbor. Data points with a high LOF value
are detected as outliers. The LOF does not suffer from the
problem above. However, the computation of LOF values
requires a large number of k-nearest neighbor queries, and
thus, can be computationally expensive [11].

As mentioned in Section I, Knorr et al. [5] have applied
the distance-based algorithm to detecting trajectory outliers.
Here, the distance is defined between two whole trajectories
using their summary information. This technique is shown
to successfully detect outliers if their directions, starting (or
ending) points, or velocities are completely different from
those of other trajectories. However, it is not clear whether
this technique can detect outlying sub-trajectories from a
set of very complicated trajectories. Our algorithm is more
powerful than this technique since ours can detect outlying
sub-trajectories as well as straightforward trajectory outliers
that are detectable by this technique.

Li et al. [12] have proposed a trajectory outlier detection
algorithm based on classification. In this algorithm, common
patterns called motifs are extracted from trajectories, and the
set of motifs forms a feature space in which the trajectories are
placed. Through the transformation into a feature vector, the
trajectories are fed into a classifier. This algorithm is inherently
different from ours in that it depends on training. More
specifically, a classification model is built using the training
set, and a new trajectory is classified into either “normal” or
“abnormal.” In a real situation, it is not always easy to obtain
a good training set. Notice that our algorithm does not require
such training.

III. PROBLEM STATEMENT

We develop an efficient outlier detection algorithm based on
the partition-and-detect framework. Given a set of trajectories
I = {TR1, · · · , TRnumtra}, our algorithm discovers a set
of outliers O = {O1, · · · , Onumout} with outlying trajectory
partitions for each outlier Oi, where the trajectory, outlier, and
outlying trajectory partition are defined as follows.

A trajectory is a sequence of multi-dimensional points and
is denoted as TRi = p1p2p3 · · · pj · · · pleni (1 ≤ i ≤ numtra).
Here, pj (1 ≤ j ≤ leni) is a d-dimensional point. The length
of a trajectory leni can be different from those of other
trajectories. A trajectory pc1pc2 · · · pck

(1 ≤ c1 < c2 < · · · <
ck ≤ leni) is called a sub-trajectory of TRi.

An outlier is a trajectory that contains outlying trajectory
partitions. A trajectory partition is a line segment pipj (i < j),

where pi and pj are the points chosen from the same trajectory.
A trajectory partition is called a t-partition for short. A t-
partition is outlying if it does not have “enough” similar
neighbors (i.e., close trajectories). The outlying t-partition is
formally defined in Section IV-A.1.

Example 3: Figure 2 shows the overall procedure of trajec-
tory outlier detection in the partition-and-detect framework.
First, each trajectory is partitioned into a set of t-partitions.
Second, outlying t-partitions, denoted by thick line segments,
are identified based on the distance from neighboring tra-
jectories. Notice that the distance measure also reflects the
difference in shape. Then, a trajectory TR3 with three outlying
t-partitions is determined as an outlier. �

TR5

TR1

TR4TR3

TR2

A set of trajectories

(1) Partition

(2) Detect
TR3

A set of t-partitions

An outlier

Outlying t-partitions

Fig. 2. An example of trajectory outlier detection in the partition-and-detect
framework.

IV. TRAJECTORY OUTLIER DETECTION

In this section, we define a trajectory outlier and propose our
trajectory outlier detection algorithm. Section IV-A formally
defines a trajectory outlier. Section IV-B discusses a trajectory
partitioning strategy. Section IV-C presents a basic trajectory
outlier detection algorithm. Section IV-D provides guidelines
for determining parameter values.

A. Definition of Trajectory Outliers

1) Formalization Using the Distance-Based Outlier: A tra-
jectory outlier is defined mainly using distance. More specifi-
cally, an outlying t-partition is identified based on the number
of close trajectories, which is determined by the distance from
neighboring trajectories. Before proceeding, we summarize the
necessary notation in Table I.

We first define a close trajectory in Definition 1. The
concept of a close trajectory is described in Figure 3. This
definition conforms to our intuition: unless a sufficient portion
of a trajectory is close to a t-partition, the trajectory should
not be regarded as close.

Definition 1: A trajectory TRi is close to a t-partition
Lj ∈ P (TRj) (TRi �= TRj) if

∑
Li∈CP (TRi,Lj,D) len(Li)

≥ len(Lj). Here, D is a parameter given by a user.

TABLE I

THE NOTATION FOR THE TRAJECTORY OUTLIER. 1

SYMBOL DEFINITION

len(Li) The length of a t-partition Li

dist(Li, Lj)
The distance between Li and Lj (See Section
IV-A.3)

P (TRi) The set of all t-partitions of TRi

CP (TRi, Lj , D)
The set of TRi’s t-partitions within the distance
D from Lj ∈ P (TRj) (TRi �= TRj), i.e., {
Li | Li ∈ P (TRi) ∧ dist(Li, Lj) ≤ D }

CTR(Li, D) The set of trajectories close to Li

OP (TRi, D, p) The set of outlying t-partitions of TRi

D≤

iTR

jL
D≤

iTR

jL

iL iL

jTRjTR

len(Li) > len(Lj) len(Li) < len(Lj)
(a) TRi is close to Lj . (b) TRi is not close to Lj .

Fig. 3. The concept of the close trajectory.

We then define an outlying t-partition in Definition 2. This
definition is adapted from the DB(p, D)-outlier [3], [4], [5]
originally defined for points. Intuitively, a t-partition Li is
outlying if at least fraction p of the trajectories in I is not
close to Li.

Definition 2: A t-partition Li ∈ P (TRi) is outlying if Ineq.
(1) is true. | I | indicates the total number of trajectories. Here,
p is a parameter given by a user.

| CTR(Li, D) | ≤ �(1 − p)| I |� (1)

We now define an outlier in Definition 3. Intuitively, a
trajectory becomes an outlier if the trajectory contains non-
negligible (designated by F) outlying t-partitions. By this
definition, a trajectory with just slight deviation is not included
in the detection result.

Definition 3: A trajectory TRi is an outlier if Ineq. (2) is
true. Here, F is a parameter given by a user.

Ofrac(TRi) =

∑
Li∈OP (TRi,D,p) len(Li)∑

Mi∈P (TRi)
len(Mi)

≥ F (2)

2) Incorporation of Density: The definition in the previous
section may lead to a problem when the data set has both dense
and sparse regions. A t-partition in a dense region tends to
have relatively a larger number of close trajectories than that
in a sparse region. As a result, t-partitions in dense regions
are favored over those in sparse regions, and thus, outlying
t-partitions may not be even detected in dense regions.

To alleviate this problem, we incorporate density into tra-
jectory outlier detection. We first define the density of a t-
partition in Definition 4. Using the definition of the density,

1The naming convention is as follows: the prefix C means “Close,” and O
“Outlying”; the postfix P means a “t-Partition,” and TR a “TRajectory.”

we introduce the notion of the adjusting coefficient of a t-
partition in Definition 5.

Definition 4: The density of a t-partition Li is defined as
Eq. (3), which is the number of t-partitions within the distance
σ from Li. Here, σ is the standard deviation of pairwise
distances between t-partitions.

density(Li) = |
⋃

TRj∈I
CP (TRj, Li, σ) | (3)

Definition 5: The adjusting coefficient of a t-partition Li is
defined as Eq. (4), which is the ratio of the average density to
the density of Li.

adj(Li) =

∑
Lj∈L density(Lj) / | L |

density(Li)
,

where L =
⋃

TRk∈I
P (TRk)

(4)

The number of close trajectories |CTR(Li, D)| is multi-
plied by the adjusting coefficient adj(Li). After the adjust-
ment, |CTR(Li, D)| is decreased in a dense region due to
a low adj(Li) value (< 1.0), but it is increased in a sparse
region due to a high adj(Li) value (> 1.0).

This scheme has a nice property that the density of a t-
partition is not affected by the parameters D, p, and F . In
contrast, the local reachability density [7] is affected by the
parameter MinPts. This property allows us to precompute the
densities of all t-partitions (unless the data set is updated).
Thus, we are able to exploit the density almost for free during
outlier detection.

3) Distance between T-Partitions: The distance between t-
partitions (i.e., line segments) is the main tool for trajectory
outlier detection. Our distance function is composed of three
components: (i) the perpendicular distance (d⊥), (ii) the par-
allel distance (d‖), and (iii) the angle distance (dθ). They are
adapted from similarity measures used in the area of pattern
recognition [13] and are intuitively illustrated in Figure 4.

θ

iL

jL

is ie

je

js
1⊥l

2⊥l
θd

1||l 2||l
)sin(

),(MIN 2||1||||

21

2
2

2
1

θθ ×=
=

+
+=

⊥⊥

⊥⊥
⊥

jLd

lld

ll

ll
d

sp ep

Fig. 4. Three components of the distance function for line segments.

We formally define the three components through Defini-
tions 6∼8. Suppose there are two line segments Li = siei

and Lj = sjej . We assign a longer line segment to Li and a
shorter one to Lj without losing generality.

Definition 6: The perpendicular distance between Li and
Lj is defined as Eq. (5), which is the Lehmer mean 2 of order

2The Lehmer mean of a set of n numbers (ak)n
k=1 is defined by

Lp(a1, a2, · · · , an) =
∑n

k=1 a
p
k∑

n
k=1 a

p−1
k

.

2. Suppose the projection points of the points sj and ej onto
Li are ps and pe, respectively. l⊥1 is the Euclidean distance
between sj and ps; l⊥2 is that between ej and pe.

d⊥(Li, Lj) =
l2⊥1 + l2⊥2

l⊥1 + l⊥2
(5)

Definition 7: The parallel distance between Li and Lj is
defined as Eq. (6). Suppose the projection points of the points
sj and ej onto Li are ps and pe, respectively. l‖1 is the
minimum of the Euclidean distances of ps to si and ei.
Likewise, l‖2 is the minimum of the Euclidean distances of
pe to si and ei.

d‖(Li, Lj) = MIN(l‖1, l‖2) (6)

Definition 8: The angle distance between Li and Lj is
defined as Eq. (7). Here, ‖Lj‖ is the length of Lj , and θ
(0◦ ≤ θ ≤ 180◦) is the smaller intersecting angle between Li

and Lj .

dθ(Li, Lj) =

{
‖Lj‖ × sin(θ), if 0◦ ≤ θ < 90◦

‖Lj‖, if 90◦ ≤ θ ≤ 180◦
(7)

We finally define the distance between two line segments as
follows: dist(Li, Lj) = w⊥ · d⊥(Li, Lj) + w‖ · d‖(Li, Lj) +
wθ · dθ(Li, Lj). The weights w⊥, w‖, and wθ are determined
depending on applications.

4) Two Types of Trajectory Outliers: The definition of a
trajectory outlier should be neutral to applications. In other
words, the definition needs to cover various kinds of applica-
tions. Not everyone has the same idea of what constitutes a
trajectory outlier, and not all data sets conform to the same
definitions or rules. Our definition can detect two types of
trajectory outliers:

• Positional outlier: The location of a trajectory is differ-
ent from those of neighboring trajectories.

• Angular outlier: The direction of a trajectory is different
from those of neighboring trajectories.

An interesting observation is that we have a knob of
emphasizing one of them. This is very useful to satisfy various
requirements: some may consider that the positional difference
is more critical in their applications, but others may consider
that the angular difference is more critical. Our distance
function is flexible enough to support both cases. For the
former case, the weights w⊥ or w‖ need to be increased; for
the latter case, the weight wθ needs to be increased. Domain
experts determine these weights based on visual inspection or
background knowledge.

B. Discussion of Trajectory Partitioning

We now discuss the desiderata of trajectory partitioning in
the partition-and-detect framework. In principle, any partition-
ing strategy, such as line simplification [14], can be exploited.
However, careless partitioning (especially, in a long length)
could miss possible outliers. Figure 5 shows a typical case,
in which a long t-partition averages out the differences from
neighboring trajectories. Notice that such a long t-partition

may be generated from a trajectory TRout if the distance
between each line segment and the t-partition is below a
threshold. Even though TRout behaves differently from its
neighboring trajectories, these differences are completely ig-
nored due to careless trajectory partitioning.

Neighboring Trajectories

A t-partition
A trajectory TRout

Fig. 5. An example of missing possible outliers.

To avoid missing possible outliers, we decide to begin with
a simple strategy which partitions a trajectory at a base unit.
A base unit is defined as the smallest meaningful unit of
a trajectory in a given application, thus being application-
dependent. Here, the interval of recording the locations of
moving objects needs to be taken into account. If the recording
interval is longer than the minimum interval of interest, the
base unit can be every single point. Otherwise, it is preferable
that the base unit should include multiple points. This simple
strategy generally leads to high-quality detection results.

An immediate problem is poor performance since the num-
ber of t-partitions tends to proliferate due to fine-granularity
partitioning. First, in Section IV-C, we present a basic version
that uses the simple strategy. Then, in Section V, we address
the performance issue.

C. Basic Algorithm

Figure 6 shows a basic version of our trajectory outlier
detection algorithm TRAOD. This algorithm consists of two
phases: partitioning and detection. In the partitioning phase,
the algorithm partitions each trajectory at a base unit (lines
1∼2). In the detection phase, the algorithm finds outlying t-
partitions (lines 3∼6) and detects trajectory outliers using the
outlying t-partitions (lines 7∼9). Notice that |CTR(Li, D)| is
multiplied by adj(Li) in line 5.

Time complexity: The time complexity of the basic version
is O(n2

t), where nt is the total number of t-partitions. To count
|CTR(Li, D)| in line 4, the algorithm compares every pair of
t-partitions.

TRAOD takes advantage of both distance-based and
density-based approaches. TRAOD is very intuitive since it
uses basically the distance-based approach, but it does not
suffer from the local density problem since it takes account
of the density as well. At the same time, the overhead
of incorporating the density is very small since it can be
precomputed beforehand.

D. Guideline for Parameter Values

Let us begin by stating there is no universally correct
parameter value even for the same data set and application [5].
Some may want to find a larger number of outliers even
though the deviation is small, but others may want to find

Algorithm TRAOD (TRAjectory Outlier Detection)

INPUT: A set of trajectories I = {TR1, · · · , TRnumtra},
three parameters: D, p, and F

OUTPUT: A set of outliers O = {O1, · · · , Onumout}
with outlying t-partitions of each Oi

ALGORITHM:
/* I. PARTITIONING PHASE */

01: for each TRi ∈ I do
02: Partition TRi at a base unit;

/* II. DETECTION PHASE */
/* L denotes the set of t-partitions */

03: for each Li ∈ L do
/* Definition 1 */

04: Count |CTR(Li, D)| by computing dist(Li, Lj),
/* TR(Li) means the trajectory enclosing Li */
where Lj ∈ L and TR(Li) �= TR(Lj);
/* Definition 2 */

05: if �|CTR(Li, D)| · adj(Li)� ≤ �(1 − p)|I|� then
06: Mark Li as outlying;
07: for each TRi ∈ I do

/* Definition 3 */
08: if Ofrac(TRi) ≥ F then
09: Output TRi with its outlying t-partitions;

Fig. 6. The outlier detection algorithm TRAOD (basic).

only very few outliers that deviate significantly. Thus, our
guideline resorts on user feedback. We believe this is sort of
unavoidable because only users familiar with the data set and
application at hand can determine whether the results returned
are meaningful or not.

Our algorithm TRAOD requires three parameters: D, p,
and F . The most tricky and sensitive parameter is D. We
suggest that users change the value of D and check the result
repeatedly during the search for outliers. A larger value of D
generates a smaller number of outliers, and a smaller value of
D a larger number of outliers.

For the parameter p, it is reasonable to select a value
of p very close to unity since an outlier occurs relatively
infrequently. Our experience indicates that p should be closer
to unity as the number of trajectories |I| increases. For
example, p = 0.95 may suffice when |I| < 103, but p = 0.99
may be more appropriate when |I| ≈ 106.

The parameter F represents the threshold of allowable
noises that are not regarded as outliers. Our experience in-
dicates that F should be smaller as the length of trajectories
leni gets longer. For example, F = 0.2 may suffice when
avg(leni) < 100, but F = 0.1 may be more appropriate when
avg(leni) > 1000.

V. TWO-LEVEL TRAJECTORY PARTITIONING

In this section, we propose a two-level trajectory partition-
ing strategy to speed up outlier detection. Given a trajectory

TRi = p1p2p3 · · · pj · · · pleni , a fine t-partition is defined as
a line segment pipi+b where b is a base unit, and a coarse
t-partition as a line segment pipi+j∗b (j ≥ 1). A coarse t-
partition may enclose multiple fine t-partitions. Hereafter, to
avoid confusion, a coarse t-partition is denoted as a capital let-
ter (e.g., Li or Lj), and a fine t-partition as a small letter (e.g.,
li or lj).

At the first level, each trajectory is partitioned into coarse
t-partitions (Section V-A). At the second level, coarse t-
partitions that are likely to be outlying are selected, and then,
only selected ones are partitioned into fine t-partitions (Section
V-B). In this way, we narrow the search space that needs to be
inspected in fine granularity (i.e., by partitioning a trajectory
at a base unit). As a result, many portions of trajectories can
be pruned early on.

To identify outlying coarse t-partitions, we derive the dis-
tance bounds between two coarse t-partitions Li and Lj:
lb(Li, Lj , dist) and ub(Li, Lj, dist). Here, lb(Li, Lj , f) and
ub(Li, Lj, f) denote the minimum and maximum of f(li, lj),
where li is a fine t-partition in Li, and lj that in Lj . These
bounds are derived in Section V-B.

A. Coarse Granularity Partitioning

1) Desirable Properties: Coarse-granularity partitioning
should possess two desirable properties: preciseness and con-
ciseness. Preciseness means that the difference between a
trajectory and a set of its coarse t-partitions should be as small
as possible; it is required for making the bounds tight. The
tighter the bounds are, the higher the pruning power becomes.
Conciseness means that the number of coarse t-partitions
should be as small as possible; it is required for reducing the
number of comparisons between coarse t-partitions.

Preciseness and conciseness are contradictory to each other.
Hence, we need to find an optimal tradeoff between the two
properties.

2) Formalization Using the MDL Principle: We adopt
our trajectory partitioning method originally proposed for
trajectory clustering [15]. This method relies on the minimum
description length (MDL) principle.

The MDL cost consists of two components: L(H) and
L(D|H). Here, H means the hypothesis, and D the data. The
two components are informally stated as follows [16]: “L(H)
is the length, in bits, of the description of the hypothesis;
and L(D|H) is the length, in bits, of the description of the
data when encoded with the help of the hypothesis.” The best
hypothesis H to explain D is the one that minimizes the sum
of L(H) and L(D|H).

The MDL principle fits very well our problem. A set of
coarse t-partitions corresponds to H , and a trajectory corre-
sponds to D. Most importantly, L(H) measures conciseness,
and L(D|H) preciseness. Thus, finding the optimal coarse-
granularity partitioning translates to finding the best hypothesis
using the MDL principle. One advantage of this method is that
it does not require any additional parameters as opposed to line
simplification [14].

Figure 7 shows our formulation of L(H) and L(D|H).
We formulate L(H) by Eq. (8). 3 L(H) represents the sum
of the length of a coarse t-partition. On the other hand, we
formulate L(D|H) by Eq. (9). L(D|H) represents the sum
of the difference between a trajectory and a coarse t-partition.
For each coarse t-partition pcj pcj+1 , we add up the difference
between pcj pcj+1 and pkpk+1 (cj ≤ k ≤ cj+1−1). To measure
the difference, the sum of d⊥ and dθ is used, but d‖ is not
since a trajectory always encloses its coarse t-partitions.

L(H) =
pari−1∑

j=1

log2(len(pcjpcj+1)) (8)

L(D|H) =
pari−1∑

j=1

cj+1−1∑
k=cj

{ log2(d⊥(pcj pcj+1 , pkpk+1))+

log2(dθ(pcj pcj+1 , pkpk+1))}
(9)

)),(),(),((log
)),(),(),((log)|(

))((log)(

4341324121412

4341324121412

412

ppppdppppdppppd
ppppdppppdppppdHDL

pplenHL

θθθ ++
+++=

=
⊥⊥⊥

1cp 2cp

1p
2p 3p

4p
5p

Fig. 7. Formulation of the MDL cost.

We find the optimal coarse-granularity partitioning that min-
imizes L(H) + L(D|H). This is exactly the tradeoff between
preciseness and conciseness. For the sake of efficiency, we use
an O(n) greedy algorithm [15].

B. Fine Granularity Partitioning

Two kinds of information in Table II is used for deriving the
lower and upper bounds. The first three values are collected
during coarse-granularity partitioning and are maintained per
coarse t-partition. The next two values are computed when
comparing two coarse t-partitions.

TABLE II

THE NOTATION FOR THE DISTANCE BOUNDS.

SYMBOL DEFINITION

maxl⊥(Li)
The maximum l⊥ between a coarse t-partition Li and
its fine t-partitions

minlen(Li)
maxlen(Li)

The minimum (or maximum) length of fine t-partitions
in Li

maxθ(Li)
The maximum angle between a coarse t-partition Li

and its fine t-partitions

l⊥1, l⊥2
The Euclidean distance from an endpoint to a projec-
tion point (See Definition 6)

θ
The angle between two coarse t-partitions Li and
Lj (See Definition 8)

Due to complicatedness of our distance function, we make
the following simplification: fine t-partitions are made to be

3We define L(H) using the length of a line segment instead of the
endpoints of a line segment. The reason is two-fold. First, our task is to
detect outlying t-partitions according to their relative distances. Second, a
very important reason not to use endpoints is to make the outlier detection
result not influenced by the coordinate values of line segments.

parallel to their coarse t-partition. This simplification is applied
to only deriving the bounds for d⊥ and d‖. It is expected not to
induce large errors since the angle between a coarse t-partition
and its fine t-partitions is usually small.

We derive the lower and upper bounds separately for d⊥, d‖,
and dθ in Lemmas 1∼3. These lemmas are used to derive the
lower and upper bounds for our distance function dist(Li, Lj)
in Lemma 4.

Lemma 1: The lower and upper bounds for d⊥(Li, Lj) are
formulated by Eqs. (10) and (11), respectively.

lb(Li, Lj , d⊥) = (10)

MIN(l⊥1, l⊥2) − (maxl⊥(Li) + maxl⊥(Lj))
ub(Li, Lj , d⊥) = (11)

MAX(l⊥1, l⊥2) + (maxl⊥(Li) + maxl⊥(Lj))

PROOF: The proof involves a series of geometric calculations.
See Appendix. �

Lemma 2: The lower and upper bounds for d‖(Li, Lj) are
formulated by Eqs. (12) and (13), respectively. Here, three
cases are determined depending on whether both, one, or none
of the projection points in Figure 4 are within Li.

lb(Li, Lj , d‖) = (12){
0 if enclose or overlap
d‖(Li, Lj) if disjoint

ub(Li, Lj , d‖) = (13)

MAX(len(Li), len(Lj)) if enclose
len(Li) + len(Lj) − d‖(Li, Lj) if overlap
len(Li) + len(Lj) + d‖(Li, Lj) if disjoint

PROOF: Straightforward. Omitted due to lack of space. �

Lemma 3: The lower and upper bounds for dθ(Li, Lj) are
formulated by Eqs. (14) and (15), respectively. If the argument
of the sine function is < 0◦ (or > 90◦), it is considered to be
0◦ (or 90◦).

lb(Li, Lj , dθ) = (14)

MIN(minlen(Li), minlen(Lj)) ×
sin(θ − maxθ(Li) − maxθ(Lj))

ub(Li, Lj , dθ) = (15)

MIN(maxlen(Li), maxlen(Lj)) ×
sin(θ + maxθ(Li) + maxθ(Lj))

PROOF: Straightforward. Omitted due to lack of space. �

Lemma 4: lb(Li, Lj, dist) is the weighted sum of Eqs.
(10), (12), and (14), where the weights are w⊥, w‖, and wθ ,
respectively. Similarly, ub(Li, Lj, dist) is the weighted sum
of Eqs. (11), (13), and (15).
PROOF: The lb()’s and ub()’s in Lemmas 1∼3 represent the
possible minimum and maximum values for each component
of dist(Li, Lj). Therefore, their weighted sums naturally

formulate the possible minimum and maximum values of
dist(Li, Lj). �

We finally present two rules for fine-granularity partitioning
as below. If lb(Li, Lj , dist) > D, none of the fine t-partitions
in Li can contribute to the number of close trajectories of any
fine t-partitions in Lj , and vice versa. On the other hand, if
ub(Li, Lj , dist) ≤ D, all of the fine t-partitions in Li can
contribute to the number of close trajectories of any fine t-
partitions in Lj , and vice versa.

• Rule 1: If lb(Li, Lj, dist) > D, fine-granularity par-
titioning is not required when comparing the coarse t-
partitions Li and Lj .

• Rule 2: If ub(Li, Lj , dist) ≤ D, fine-granularity par-
titioning is required, but the distance between the fine
t-partitions in Li and Lj needs not be computed.

C. Performance-Enhanced Algorithm

Figure 8 shows a performance-enhanced version of
TRAOD. The partitioning phase becomes more sophisticated.
Each trajectory is first partitioned in coarse granularity (lines
1∼2). If a pair of coarse t-partitions triggers Rule 1, the pair
is not inspected further (lines 4∼5). Otherwise, two coarse t-
partitions in the pair are partitioned in fine granularity (lines
6∼7); unless the pair of coarse t-partitions triggers Rule 2, the
distance between fine t-partitions is checked, and then, a close
pair is stored in the lists CL(li) and CL(lj) (lines 10∼13). The
detection phase is the same as that of the basic version, except
that the number of close trajectories |CTR(li, D)| is counted
using the list CL(li) instead of comparing every pair of fine
t-partitions.

Time complexity: The time complexity of the enhanced
version is O(n2

c + n2
f), where nc is the number of coarse t-

partitions, and nf is that of fine ones. Notice that nc
 nt and
nf
 nt compared with the basic version. This is exactly the
reason why the performance gain is achieved in the enhanced
version.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setting

We use two real trajectory data sets: the hurricane track data
set 4 and the animal movement data set 5.

The hurricane track data set is called Best Track. Best
Track contains the hurricane’s latitude, longitude, maximum
sustained surface wind, and minimum sea-level pressure at 6-
hourly intervals. We extract the latitude and longitude from
Best Track for experiments. We use the Atlantic hurricanes
from the years 1950 through 2006. This data set has 608
trajectories and 18951 points. A small portion (1990∼2006)
of the data set, which has 221 trajectories and 7270 points, is
also used.

The animal movement data set has been generated by the
Starkey project. This data set contains the radio-telemetry

4http://weather.unisys.com/hurricane/atlantic/
5http://www.fs.fed.us/pnw/starkey/data/tables/

Algorithm TRAOD (TRAjectory Outlier Detection)

INPUT: A set of trajectories I = {TR1, · · · , TRnumtra},
three parameters: D, p, and F

OUTPUT: A set of outliers O = {O1, · · · , Onumout}
with outlying fine t-partitions of each Oi

ALGORITHM:
/* I. PARTITIONING PHASE */

01: for each TRi ∈ I do
02: Partition TRi in coarse granularity;

/* C denotes the set of coarse t-partitions */
03: for each pair of Li ∈ C and Lj ∈ C (Li �= Lj) do
04: if lb(Li, Lj, dist) > D then /* RULE 1 */
05: Continue to the next pair; /* Do nothing */
06: else
07: Partition Li and Lj in fine granularity;
08: if ub(Li, Lj, dist) ≤ D then /* RULE 2 */

/* CL(li) holds the t-partitions close to li */
09: ∀li ∈ Li and ∀lj ∈ Lj ,

Insert li into CL(lj) and lj into CL(li);
10: else

/* Every pair of fine t-partitions is compared */
11: for each pair of li ∈ Li and lj ∈ Lj do
12: if dist(li, lj) ≤ D then
13: Insert li into CL(lj) and lj into CL(li);

/* II. DETECTION PHASE */
/* F denotes the set of fine t-partitions */

14: for each li ∈ F do
15: Count |CTR(li, D)| by using CL(li);
16: if �|CTR(li, D)| · adj(li)� ≤ �(1 − p)|I|� then
17: Mark li as outlying;
18: for each TRi ∈ I do
19: if Ofrac(TRi) ≥ F then
20: Output TRi with its outlying fine t-partitions;

Fig. 8. The outlier detection algorithm TRAOD (enhanced).

locations (with other information) of elk, deer, and cattle from
the years 1993 through 1996. The locations are recorded at 30-
minute intervals. We extract the x and y coordinates from the
telemetry data for experiments. We use elk’s movements in
June 1993 (Elk1993), deer’s movements in 1995 (Deer1995),
and cattle’s movements in 1993 (Cattle1993). Elk1993 has 33
trajectories and 15422 points; Deer1995 32 trajectories and
20065 points; Cattle1993 41 trajectories and 19556 points.

We put more weights on the angular outliers in experiments.
For the hurricane track data set, wθ is set to be five times larger
than w⊥ or w‖. For the animal movement data set, wθ is set
to be two times larger than w⊥ or w‖.

We conduct all experiments on a Pentium-4 3.0 GHz PC
with 1 GBytes of main memory, running on Windows XP. We
implement our algorithm and visual inspection tool in C++
using Microsoft Visual Studio 2005. All images in this paper
are obtained by executing the enhanced version of TRAOD. 6

B. Results for Hurricane Track Data

Figure 9 shows the result for a small portion of the Hur-
ricane data set. The parameters are set as follows: D = 85,
p = 0.95, and F = 0.2. Here, thick red lines represent outlying
t-partitions, thin red lines trajectory outliers with outlying t-
partitions, and thin green lines normal trajectories. We observe
that thirteen trajectory outliers are detected. Notice that thin
red lines are not outlying by themselves, but thick red lines
are. We can easily see that outlying t-partitions appear if their
directions are significantly different from those of neighboring
trajectories or if they have very few neighboring trajectories.
In Figure 9, the outlying t-partitions in the middle region are
moving to totally different directions, and the ones in the right
region have almost no neighboring trajectory.

Fig. 9. Trajectory outliers for Hurricane (small).

C. Results for Animal Movement Data

Figure 10 shows the result for the Elk1993 data set. The
parameters are set as follows: D = 55, p = 0.95, and F =
0.1. We observe that three trajectory outliers are detected. The
outlying t-partitions are shown to be located in very sparse
regions, especially at the protrusions of the movement pattern:
the lower-left, lower-right, and upper-right regions. Hence, this
result looks reasonable.

Figure 11 shows the result for the Deer1995 data set. 7 The
parameters are set as follows: D = 80, p = 0.95, and F =
0.1. We observe that three trajectory outliers are detected. The
outlying t-partitions are shown to be concentrated in a few
regions. It turns out that just one or two deer have moved
around these regions in a random fashion. Hence, this result is
verified to be correct. In addition, it is interesting that outliers
are detected only in the regions where clusters have not been
identified; i.e., this result is almost the complementary set of
the clustering result shown by Lee et al. [15].

6We encourage the interested reader to visit “http://netfiles.uiuc.edu/jaegil
/www/icde08” to view large images in this paper.

7One might wonder why there are somewhat straight and long line seg-
ments. Their endpoints are recorded with a longer interval due to some missing
signals. Such line segments are ignored in detecting outlying t-partitions.

Fig. 10. Trajectory outliers for Elk1993.

Fig. 11. Trajectory outliers for Deer1995.

D. Efficiency and Accuracy of Pruning

Figure 12 shows the pruning power of the two-level par-
titioning strategy. Here, 2L-Total is the ratio of the number
of pairs pruned by Rule 1 to the total number of pairs of
coarse t-partitions. 2L-False is the proportion of pairs pruned
incorrectly. Optimal is obtained by actually calculating the
exact number of pairs that can be pruned. This result indicates
that a large proportion (64∼88%) of comparisons between
coarse t-partitions can be pruned off, and the proportion of
incorrect pruning is absolutely negligible (0.1∼1.8%). We note
that incorrect pruning is caused by the simplification in Section
V-B. More importantly, the bounds derived by Lemma 4 are
sufficiently tight in the sense that 2L-Total is as close as
76∼93% of Optimal.

Figure 13 shows the speedup ratio of the two-level par-
titioning strategy. Here, the speedup ratio is defined as the
ratio of the wall clock time of the basic version to that of the
performance-enhanced version. Performance is shown to be
improved by 27∼74 times. This result indeed demonstrates

0.018 0.001 0.001 0.0030

0.2

0.4

0.6

0.8

1

Hurricane Elk1993 Deer1995 Cattle1993
Dataset

P
ru

ni
ng

 P
ow

er

2L-False 2L-Total Optimal

Fig. 12. Pruning power of two-level partitioning.

30.9 27.0

73.7

42.8

0

20

40

60

80

Hurricane Elk1993 Deer1995 Cattle1993
Dataset

S
pe

ed
up

 R
at

io

Fig. 13. Speedup ratio of two-level partitioning.

the effectiveness of the two-level partitioning strategy. The
speedup ratio becomes higher as the size of the data set
increases or as the pruning power gets higher.

E. Effects of Parameter Values

Figure 14 compares the results for the Hurricane (small)
data set when using different values of the parameter D.
Compared with Figure 9, a larger number (19) of trajectory
outliers are detected in Figure 14 (a), whereas a smaller
number (10) of them are detected in Figure 14 (b). Less-
outlying trajectories can be detected using a smaller value of
D. As discussed in Section IV-D, the correct parameter value
is heavily dependent on the users’ purpose: some prefer the
former result, but others the latter. We expect that many users
have a desired number of trajectory outliers in their minds, so
they can adjust the parameter value to achieve it.

Table III shows the number of trajectory outliers (as well
as the number of outlying t-partitions) for Deer1995 while
varying the values of the parameters D and p. The number
of trajectory outliers increases as the value of D decreases or
as the value of p decreases. While varying the value of p, the
number of trajectory outliers is varied in a stair-like fashion
according to �(1 − p)|I|�.

TABLE III

THE NUMBER OF TRAJECTORY OUTLIERS FOR DEER1995 DEPENDING

ON THE PARAMETER VALUES.

D (p = 0.95) 65 70 75 80 85 90 95
of trajectories 4 3 3 3 2 1 1
of t-partitions 662 546 404 307 228 146 87

p (D = 80) 0.93 0.94 0.95 0.96 0.97 0.98 0.99
of trajectories 3 3 3 3 2 2 2
of t-partitions 307 307 307 307 84 84 84

(a) D=83, p=0.95, F=0.2

(b) D=87, p=0.95, F=0.2

Fig. 14. Comparison of trajectory outliers for Hurricane (small) when using
different parameter values.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel framework, the
partition-and-detect framework, for trajectory outlier detec-
tion. Based on this framework, we have developed a trajectory
outlier detection algorithm, TRAOD. The main advantage of
TRAOD is the detection of outlying sub-trajectories from a
trajectory database. The visual inspection results show that
TRAOD effectively detects trajectory outliers with outlying t-
partitions. Overall, we believe that we have provided a new
paradigm in trajectory outlier detection.

This work is just the first step, and there are many challeng-
ing issues. First, we consider here only the spatial information.
In applications, temporal information is often associated with
spatial information. Since the movement pattern of an object
is closely related to its speed, more interesting results can
be obtained if we exploit this temporal information as well.
Second, we are using a hybrid of the distance-based and
density-based approaches. It is worthwhile to compare the
result of our approach with that of the purely density-based
approach. We are currently investigating into the detailed
issues as a further study.

ACKNOWLEDGEMENT

The work was supported in part by the Korea Re-
search Foundation grant, funded by the Korean Govern-
ment (MOEHRD), KRF-2006-214-D00129, by the U.S. Na-
tional Science Foundation NSF IIS-05-13678 and BDI-05-
15813, and by the Boeing company. Any opinions, findings,
and conclusions or recommendations expressed here are those
of the authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed.
Morgan Kaufmann, 2006.

[2] V. Barnett and T. Lewis, Outliers in Statistical Data. John Wiley &
Sons, 1994.

[3] E. M. Knorr and R. T. Ng, “Algorithms for mining distance-based
outliers in large datasets,” in Proc. 24th Int’l Conf. on Very Large Data
Bases, New York City, New York, Aug. 1998, pp. 392–403.

[4] ——, “Finding intensional knowledge of distance-based outliers,” in
Proc. 25th Int’l Conf. on Very Large Data Bases, Edinburgh, Scotland,
Sept. 1999, pp. 211–222.

[5] E. M. Knorr, R. T. Ng, and V. Tucakov, “Distance-based outliers:
Algorithms and applications,” VLDB Journal, vol. 8, no. 3, pp. 237–
253, Feb. 2000.

[6] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in Proc. 2000 ACM SIGMOD Int’l
Conf. on Management of Data, Dallas, Texas, May 2000, pp. 427–438.

[7] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” in Proc. 2000 ACM SIGMOD Int’l Conf.
on Management of Data, Dallas, Texas, May 2000, pp. 93–104.

[8] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos, “LOCI:
Fast outlier detection using the local correlation integral,” in Proc. 19th
Int’l Conf. on Data Engineering, Bangalore, India, Mar. 2003, pp. 315–
326.

[9] C. C. Aggarwal and P. S. Yu, “Outlier detection for high dimensional
data,” in Proc. 2001 ACM SIGMOD Int’l Conf. on Management of Data,
Santa Barbara, California, May 2001, pp. 37–46.

[10] L. E. Carr and R. L. Elsberry, “Monsoonal interactions leading to sudden
tropical cyclone track changes,” Monthly Weather Review, vol. 123,
no. 2, pp. 265–290, Feb. 1995.

[11] W. Jin, A. K. H. Tung, and J. Han, “Mining top-n local outliers in
large databases,” in Proc. 7th ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining, San Francisco, California, Aug. 2001, pp.
293–298.

[12] X. Li, J. Han, S. Kim, and H. Gonzalez, “ROAM: Rule- and motif-
based anomaly detection in massive moving object data sets,” in Proc.
7th SIAM Int’l Conf. on Data Mining, Minneapolis, Minnesota, Apr.
2007.

[13] J. Chen, M. K. H. Leung, and Y. Gao, “Noisy logo recognition using
line segment hausdorff distance,” Pattern Recognition, vol. 36, no. 4,
pp. 943–955, Apr. 2003.

[14] H. Cao, O. Wolfson, and G. Trajcevski, “Spatio-temporal data reduction
with deterministic error bounds,” VLDB Journal, vol. 15, no. 3, pp.
211–228, Sept. 2006.

[15] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: A partition-
and-group framework,” in Proc. 2007 ACM SIGMOD Int’l Conf. on
Management of Data, Beijing, China, June 2007, pp. 593–604, The
extended version is available from http://www.cs.uiuc.edu/research/
techreports.php?report=UIUCDCS-R-2007-2828.

[16] P. D. Grünwald, I. J. Myung, and M. A. Pitt, Advances in Minimum
Description Length: Theory and Applications. MIT Press, 2005.

APPENDIX: PROOF OF LEMMA 1

Let li and lj be any fine t-partitions in Li and Lj , respec-
tively. d⊥(li, lj) denotes the perpendicular distance between li
and lj . First, the minimum of l⊥(li, lj) is achieved as in Figure
15 (a). In this case, Eq. (10) ≤ minl⊥(li, lj) ≤ d⊥(li, lj).
Second, the maximum of l⊥(li, lj) is achieved as in Figure 15
(b). In this case, d⊥(li, lj) ≤ maxl⊥(li, lj) ≤ Eq. (11).

iL

jL

1⊥l
2⊥l

il

jl

)(max iLl⊥

)(max jLl⊥

iL

jL

1⊥l
2⊥l

il

jl

)(max iLl⊥

)(max jLl⊥

)(min , ji lll⊥

)(max , ji lll⊥

(a) Lower bound. (b) Upper bound.

Fig. 15. Derivation of the bounds for d⊥ .

