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ABSTRACT
A topic directory, e.g., Yahoo directory, provides a view of
a document set at different levels of abstraction and is ideal
for the interactive exploration and visualization of the docu-
ment set. We present a method that dynamically generates
a topic directory from a document set using a frequent closed
termset mining algorithm. Our method shows experimental
results of equal quality to recent document clustering meth-
ods and has additional benefits such as automatic generation
of topic labels and determination of a clustering parameter.
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1. INTRODUCTION
A topic directory is a hierarchical document tree or graph

structure in which each node has a topic label (or a cluster
description) and corresponding documents. The topic of a
higher node conceptually covers its children nodes. For a
static topic directory, e.g., Yahoo Web directory, the tax-
onomy is static and manually constructed by the domain
experts, and documents are classified into the taxonomy
by (non-)automatic classifiers. Such static directories are
usually used for organizing and searching targeted docu-
ments. On the other hand, dynamic topic directories are
constructed automatically given a fixed document set or a
temporal interest across document sets, e.g., browsing the
main news of year 2000 from the AP news data. The di-
rectory and topic labels are constructed dynamically (i.e.,
no preset taxonomy) based on the contents of the document
set.

Construction of a dynamic topic directory requires the
techniques of hierarchical document soft-clustering and clus-
ter summarization for constructing topic labels. Recent
studies in document clustering show that UPGMA [4] and
bisecting k-means [7, 3] are the most accurate algorithms in
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the categories of agglomerative and partitioning clustering
algorithms respectively and outperform other recent hierar-
chical clustering methods in terms of the clustering quality
[7, 4, 3]. However, such clustering methods (1) do not pro-
vide cluster descriptions, (2) are not scalable to large docu-
ment sets (for UPGMA), (3) require the user to decide the
number of clusters a priori which is usually unknown in real
applications, and (4) focus on hard-clustering (whereas in
the real world a document could belong to multiple cate-
gories).

Another recent approach is to use frequent itemset min-
ing to construct clusters with corresponding topic labels [2,
5]. This approach first run a frequent itemset mining al-
gorithm, e.g., Apriori [1], to mine frequent termsets from a
document set. (An itemset corresponds to a termset, i.e.,
a set of terms, in this case.) Then they cluster documents
based on only the low-dimensional frequent termsets. Each
frequent termset serves as the topic label of a cluster. The
corresponding cluster consists of the set of documents con-
taining the termset. This method indeed turns out to be
as accurate as the other leading document clustering algo-
rithms (e.g., bisecting k-means and UPGMA) in terms of
clustering quality [5], and is more efficient since it substan-
tially reduces the dimensions when constructing clusters.

However, this approach introduces another critical issue
– determination of the support threshold. Since clusters are
constructed by frequent termsets and cluster size is the sup-
port of termset, the number of clusters (i.e., previously a
user parameter) is now determined by the support thresh-
old (i.e., a new user parameter). The support threshold
affects the entire cluster processing in terms of the qual-
ity and scalability: An over-set threshold could delay the
mining time exponentially and also generate too many fre-
quent terms. An under-set threshold could generate a too
abstract directory to cover every document in the set. The
seemingly best way to adjust the support threshold is to run
the mining algorithm multiple times with different support
thresholds from small to large, and probe the information
about the abstraction level of the directory or the cluster
coverage, i.e., what portion of documents is covered by the
clusters. However, then we would end up losing the benefit
of using mining algorithm for document clustering. The en-
tire clustering process becomes unscalable and need tedious
manual optimization.

We propose a nonparametric closed termset mining method
for efficient topic directory construction, which (1) adjusts
the support threshold before running the mining algorithm
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by introducing an FT-tree (See Section 2.1), and (2) run
the most efficient frequent closed termset mining algorithm
– CLOSET+ [8]. While the previous clustering methods
[5, 2] use all the frequent termsets to construct hierarchical
clusters, only closed termsets are meaningful in hierarchical
clustering (discussed in Section 2.1.3). We finally present
an efficient way to build the soft-clusters from the initial
clusters. Soft-clustering is necessary for many applications
because a document can belong to multiple clusters. Empir-
ically, our method shows clustering quality as high as most
recent document clustering methods but is more efficient.
It also naturally produces topic labels for the clusters using
frequent closed termsets.

2. SCALABLE CONSTRUCTION OF TOPIC
DIRECTORY WITH NONPARAMETRIC
CLOSED TERMSET MINING

Raw Documents
TFIDF Vectors

d1 (t1:0.7, t8:0.9, …)

d2 (t4:0.3, t6:0.3, …)

…

dn (t1:0.7, t6:0.3, …)

FT-tree

{ t1 t8}  : d1, …

{ t4 t6 t8}  : d2, d5, …

…

{ t6 t8}  : d3, d7, …

Initial Clusters

(1) (2)

(3)

(4)

Topic Directory

{ t6}  : d2, …

{ t6 t4}  : d9, …

{ t6 t4 t8}  : d5, ……

…

D = { d1,…,dn}

Figure 1: Framework

Every text clustering method preprocesses documents in
several steps, such as removing stopwords (i.e., “I”, “am”,
“and”) and word-stemming (i.e., merging the same words of
different forms like “term” and “terms”). After we prepro-
cess the raw documents (Step (1) in Figure 2), each docu-
ment can be represented as a vector of the weighted term fre-
quencies, i.e., term frequency × inverse document frequency
(TFIDF), which the information retrieval community calls
a vector space model. Our algorithm applies TFIDF. How-
ever, in our running examples, we will simply use TF for
better understanding.

Starting from this vector space model, we construct FT-
tree to mine closed termsets and then construct the initial
clusters (Step (2)). Note that termsets are found based on
word presence not on the TFIDF. After that, we construct
the initial clusters from the FT-tree (Step (3)), which can
be done without scanning the TFIDF vectors. The initial
clusters are a list of a frequent closed termset with the doc-
uments that contain the termset. So, the documents are
duplicated in multiple clusters within the initial clusters.
When we construct the final topic directory with maximally
max dup number of document duplications (Step (4)), we
use the original TFIDF vectors to trim the duplication from
the initial clusters.

2.1 Nonparametric Closed Termset Mining for
Document Clustering

2.1.1 FT-tree Construction
The FP-tree published in [6] is a prefix tree with sorted

items in which each node contains an item and the support
of the itemset from root to path. The FP-tree has proven to
be an efficient structure for mining frequent (closed) itemsets
[8]. The FT-tree is similar to the FP-tree except that the
FT-tree includes document IDs in addition. For instance,
Figure 2(a) shows the FT-tree constructed from document
set D of the table in Fig. 2. The FT-tree can be defined
as the FP-tree including document ID at the last node of
the corresponding path. Constructing a FT-tree is also sim-
ilar to constructing a FP-tree except that when we insert a
termset representing a document (i.e., a pattern in the FP-
tree) into the tree, we insert the document ID at the last
node. Note that each document ID will show only once the
FT-tree because each document or termset is represented by
only one path in the FT-tree, so multiple paths cannot have
the same document ID.

2.1.2 Probing Support Threshold
How can we efficiently identify the maximal sup thr with-

out running a mining algorithm, such that the clusters (i.e.,
the mined termsets) generated from the sup thr cover every
document in the document set (or cluster coverage = 1.0)?
To illustrate, consider the FT-tree of Figure 2(a) that is
constructed from the table in Fig. 2. We start pruning the
tree from the bottom. (Since a FT-tree is a prefix tree with
sorted items, as is a FP-tree, the lower nodes contain the
items of lower supports.) The item f of support = 2, i.e.,
the two nodes of thick lines in Figure 2(a), will be pruned
first. If the pruned nodes contain any document IDs, we
pass the IDs to their parents nodes. Thus, the FT-tree af-
ter pruning f becomes the tree of Figure 2(b). As you see,
the parent nodes a and b now in Figure 2(b) contain the
IDs d1 and d4 respectively. This means that after we prune
a term f , documents d1 and d4 – previously covered by
termsets {e, b, a, f} and {b, f} respectively – are now cov-
ered by termsets {e, b, a} and {b}. Next, we prune the term
a of support = 3, i.e., the three nodes of thick lines in Fig-
ure 2(b). Then, the tree of Figure 2(b) becomes the tree of
Figure 2(c). In other words, documents d1, d5 and d2 – pre-
viously covered by termsets {e, b, a}, {e, c, d, a} and {c, d, a}
respectively – are now covered by termsets {e, b}, {e, c, d}
and {c, d}. When we start pruning the terms b and d of the
next higher support = 4, i.e., the four nodes of thick lines
in Figure 2(c), we find that d4 will not be covered by any
node since its parent is Null. Thus, we stop the pruning
procedure here, and the maximal sup thr that covers every
document is 4.

Note that we can compute this maximal sup thr without
actually pruning the tree but not by searching over the tree
from the bottom to find the first node whose parent is Null.
However, showing the “flow” of document IDs in the tree
as sup thr increases helps users understand the relations
among the sup thr, the covered documents, and the length
of the termset that covers the documents. In addition to the
shown example, there are certain subtleties. For instance,
suppose that a document set contains very few “outlier” doc-
uments that do not share any terms with other documents
in the set, then the maximal sup thr becomes very low for
mined termsets to cover such outlier documents. In such
cases, the document coverage information of Table 2.1.2
becomes very useful in determining the proper sup thr. Col-
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ID termset ordered

d1 a, b, e, f e, b, a, f

d2 a, c, d c, d, a

d3 e e

d4 b, f b, f

d5 a, c, d, e e, c, d, a

d6 c, d c, d

d7 c, d c, d

d8 c, e e, c

d9 b, e e, b

d10 b, e e, b

Document set D

Null

e:6
{d3} c:3 b:1

f:1
{d4}

b:3
{d9 d10}

a:1

f:1
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d:3
{d6 d7}

a:1
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c:2
{d8}

d:1

a:1
{d5}
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Null

e:6
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(b)

Null

e:6
{d3} c:3 b:1

{d4}

b:3
{d1 d9 d10} d:3

{d2 d6 d7}

c:2
{d8}

d:1
{d5}

d:4

b:4

c:5

e:6

LinkTerm

(c)

Figure 2: Determining Support

sup Cov Not Covered Doc.

4 1.0

5 0.9 d4
6 0.6 d2 d6 d7
7 0.0 d1 d3 d5 d8 d9 d10

Table 1: Coverage ta-

ble

Cluster Doc. IDs

< e > {d1d3d5d8d9d10}

< c > {d2d5d6d7d8}

< b > {d1d4d9d10}

< cd > {d2d5d6d7}

Table 2: Initial clusters

umn “Coverage” in the table denotes the portion of docu-
ments that is covered by the corresponding sup thr. Column
“Not Covered Doc. IDs” denotes the actual document IDs
that are not covered by the sup thr. This coverage table
can be efficiently generated from the FT-tree before mining
frequent terms.

2.1.3 Mining Closed Termsets from FT-tree
As noted in [8], mining frequent closed termsets can lead

to orders of magnitude smaller result termsets than min-
ing frequent termsets while retaining the completeness, i.e.,
from the concise result set, it is straightforward to gener-
ate all the frequent termsets with accurate support counts.
Closed termsets are meaningful for constructing a topic di-
rectory since non-closed termsets are always covered by closed
sets.

Since FT-tree subsumes FP-tree, we can simply apply the
most recent closed itemset mining algorithm CLOSET+ [8]
on an FT-tree. Running CLOSET+ on the FT-tree of Fig-
ure 2(c) with sup thr = 4 generates closed termsets: < e >,
< c >, < b >, < cd >.

2.2 Constructing Initial Clusters
For each frequent closed termset, we construct an initial

cluster to contain all the documents that contain the item-
set. Initial clusters are not disjoint because one document
may contain several termsets. We will restrain the maximal
number of duplications of each document in the clusters in
Section 2.3. The termset of each cluster is the cluster label
– identity of each cluster. Cluster labels also specify the
set-containment relationship of the hierarchical structure in
topic directory.

Using FT-tree, we do not need to scan the documents to
construct the initial clusters while the previous methods [5]
do. Document IDs are included in a FT-tree. To retrieve all
the documents containing a closed termset, we need to find
all the paths containing the termset; the document IDs be-
low the paths are all the documents containing the termset.
Figure 2.2 describes the method and rationale for retrieving
the document IDs for each closed termset to construct initial
clusters. Table 2.1.2 shows the initial clusters constructed
from the FT-tree of our running example (Figure 2(c)).

2.3 Topic Directory Construction

• Input: frequent closed termsets

• Output: initial clusters (pairs of termset and document
IDs)

Method:

• for each closed termset T

– for each node t in the sidelink of the last term of T

from the header table

∗ if the path from the root to t contains the termset
T , assign to the termset with the document IDs
in and below t

Figure 3: Constructing initial clusters from FT-tree

After initial clusters are constructed, Step (4) builds a
topic directory from the initial clusters and the TFIDF vec-
tors. Before building the topic directory, we prune the di-
rectory by (1) removing “inner termsets” (Section 2.3.1)
and (2) constraining the maximal number of document du-
plication (Section 2.3.2). After that, a topic directory is
constructed (Section 2.3.3) and the first level nodes are fi-
nally merged (Section 2.3.4).

2.3.1 Removing Inner Termsets

Doc Cluster Labels

d1 < e >, < b >

d2 (< c >), < cd >

d3 < e >

d4 < b >

d5 < e >, (< c >), < cd >

d6 (< c >), < cd >

d7 (< c >), < cd >

d8 < e >, < c >

d9 < e >, < b >

d10 < e >, < b >

Table 3: Clusters for

each document. termsets
within parentheses are inner
termsets Table 4: Topic directory

If multiple nodes in the same path in a directory contain
the same documents, to minimize the document redundancy,
we only leave the one in the lowest node and remove the
others. This is done by removing “inner termsets” – among
frequent closed termsets, the termsets whose superset exists
in the same document, e.g., in Table 2.3.1, termset < c >

in document d2 is an inner termset as its superset < cd >

also exists in d2. Removing inner termsets will not cause an
empty node in the directory and will not affect the clustering
quality.
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2.3.2 Constraining Document Duplication
We allow the user to set the maximal number of dupli-

cation max dup of each document in the directory. By al-
lowing the directory to be a graph and max dup ≥ 1, our
method naturally supports soft clustering, which is neces-
sary for many applications (e.g., Yahoo directory) because
a document can belong to multiple clusters. We refer to the
original TFIDF vectors to exclude inferior nodes for each
document by applying a heuristic score function such as
score(d, T ) =

P

t∈T
d × t where d × t denotes the vector

of term t in document d.

2.3.3 Constructing Topic Directory
Constructing a topic directory from the document-cluster

list, e.g., Table 2.3.1 with max dup = 2, can be done in a
top-down way.

• Input: nodes (termsets), document-cluster list

• Output: topic directory

Main:

• for m = 1 to maximal length of nodes

– for node of length = m

∗ link(node, m)

• connect document IDs to corresponding nodes using the
document-cluster list

link(node, m):

• if m = 0, then link node to root,
else:

– if there exist inner nodes of length m − 1,
then link the node to them as a child,
else link(node, m-1)

Figure 4: Constructing topic directory

We start building a directory from the root: link the
nodes of length one at the first level, and link the nodes of
larger length to their inner nodes as children nodes. Figure
2.3.3 describes the method of constructing a topic directory.
The topic directory from Table 2.3.1, i.e., max dup = 2, is
shown in Figure 2.3.1.

2.3.4 Merging the First Level Nodes
Common mining algorithms usually generate a large num-

ber of frequent termsets of length one. Thus, a clustering
method based on frequent termset mining tends to gener-
ate a lot of first level nodes, in which merging the first level
nodes helps to provide users with more comprehensible in-
terface. We merge the nodes of high similarity by creating
a higher level node between the root and the similar nodes
until the total number of the first level nodes becomes less
than or equal to a user-specified number. We use a heuristic
similarity function as follows:

sim(n1, n2) =
# of common documents in n1 and n2

# of documents in n1 and n2

3. EXPERIMENT
We compare our method with other recent document clus-

tering methods – agglomerative UPGMA [4], bisecting k-
means [7, 3], and those using frequent itemset mining –

FIHC [5], HFTC [2]. We used the same evaluation method
and the same datasets as used in [5] except that, for Reuters,
we do not exclude the articles assigned to multiple cate-
gories. Due to space limitations, we report the main results
and leave the details to a technical report.

3.0.5 Performance comparison

Dataset # of clus TDC FIHC Bi k-means UPGMA

3 0.57 0.45 0.54 0.33
15 0.52 0.42 0.44 0.33

Hitech 30 0.48 0.41 0.29 0.47
60 0.44 0.41 0.21 0.40

Ave. 0.50 0.42 0.37 0.38

3 0.57 0.53 0.34 0.36
15 0.51 0.45 0.38 0.47

Re0 30 0.47 0.43 0.38 0.42
60 0.41 0.38 0.28 0.34

Ave. 0.49 0.45 0.34 0.40

3 0.47 0.40 0.40 0.39
15 0.45 0.56 0.57 0.49

Wap 30 0.43 0.57 0.44 0.58

60 0.41 0.55 0.37 0.59

Ave. 0.44 0.52 0.45 0.51

3 0.61 0.62 0.59 ×
15 0.53 0.52 0.46 ×

Classic4 30 0.48 0.52 0.43 ×
60 0.41 0.51 0.27 ×

Ave. 0.50 0.54 0.44 ×

3 0.46 0.37 0.40 ×
15 0.45 0.40 0.34 ×

Reuters 30 0.42 0.40 0.31 ×
60 0.40 0.39 0.26 ×

Ave. 0.43 0.39 0.33 ×

Table 5: F-measure comparison. # of clus: # of clus-
ters; ×: not scalable to run

Table 3.0.5 shows the overall performance of the four
methods on the five data sets. TDC outperforms the other
methods on data sets Hitech, Re0, and Reuters, and shows
similar performance to FIHC for others. Table 3.0.5 shows
the sup thr of coverage = 1.0 determined for each data set.

Hitech Re0 Wap Classic4 Reuters

sup thr 363/2301 138/1504 333/1560 70/7094 174/10802

Table 6: sup thr of coverage = 1.0 # of total document
in each data set is within the parentheses.
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