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Abstract. With recent advances in sensory and mobile computing tech-
nology, enormous amounts of data about moving objects are being col-
lected. With such data, it becomes possible to automatically identify
suspicious behavior in object movements. Anomaly detection in massive
sets of moving objects has many important applications, especially in
surveillance, law enforcement, and homeland security.
Due to the sheer volume of spatiotemporal and non-spatial data (such as
weather and object type) associated with moving objects, it is challenging
to develop a method that can efficiently and effectively detect anomalies
in complex scenarios. The problem is further complicated by the fact that
anomalies may occur at various levels of abstraction and be associated
with different time and location granularities. In this paper, we analyze
the problem of anomaly detection in moving objects and propose an
efficient and scalable classification method, Motion-Alert, which proceeds
with the following three steps.

1. Object movement features, called motifs, are extracted from the ob-
ject paths. Each path consists of a sequence of motif expressions,
associated with the values related to time and location.

2. To discover anomalies in object movements, motif-based generaliza-
tion is performed that clusters similar object movement fragments
and generalizes the movements based on the associated motifs.

3. With motif-based generalization, objects are put into a multi-level
feature space and are classified by a classifier that can handle high-
dimensional feature spaces.

We implemented the above method as one of the core components in our
moving-object anomaly detection system, motion-alert. Our experiments
show that the system is more accurate than traditional classification
techniques.

1 Introduction

In recent years, gathering data on moving objects, i.e., the objects that change
their spatial locations with time, has become an easy and common task. The
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tracking of mobile objects, whether it be a tiny cellphone or a giant ocean liner,
is becoming increasingly accessible with embedded GPS devices and other sen-
sors. In cases where direct recording is unavailable, particle tracking techniques
are available using RADAR or satellite images. Such enormous amounts of data
on moving objects pose great challenges on effective and scalable analysis and
applications. One application which is of particular interest in homeland security
is the detection of suspicious or anomalous moving objects: i.e., automatic iden-
tification of the abnormal or suspicious moving objects from among a massive
set of object movements.

Example 1 There is a large number of vessels traveling near American coasts.
It is unrealistic to manually trace such an enormous number of moving objects
and identify suspicious ones. But there is likely to exist a number of previous case
studies on suspicious vessels. Training for manual inspection of ships provided
by experts would be a good source of such examples. Thus it is possible and
highly desirable to develop automated tools that can evaluate the behavior of
all maritime vessels and flag the suspicious ones. This will allow human agents
to focus their monitoring more efficiently and accurately.

In this paper, we take vessels in Example 1 as a typical type of moving objects
and study how to develop scalable and effective methods for automated detection
of anomalous moving objects. We believe such methods can be easily extended
to other applications. In general, there are two general mechanisms for anomaly
detection: classification, which relies on training data sets, and clustering, which
performs automated grouping without using training sets. Here we focus our
study on classification, because it is not hard to find a set of training examples.
With good quality training data, classification often leads to higher accuracy
than clustering-based methods in anomaly detection.

There are several major challenges in anomaly detection of moving objects.
First, tracking moving objects can generate an enormous amount of high preci-
sion and complex data, consisting of both spatiotemporal and non-spatial infor-
mation. For example, the time and location of a vessel might be recorded every
few seconds, and non-spatial information such as the vessel’s weight, speed,
shape, and paint-color may be included in the recordings. Second, there exist
substantial complexities of possible abnormal behavior, which may occur at ar-
bitrary levels of abstraction and be associated with different time and location
granularities. The massive amount of data and complexity of abnormal patterns
make efficient and effective anomaly detection very challenging.

In this study, we systematically study this problem and propose Motion-
Alert, an effective and scalable classification method for detecting anomalous
behavior in moving objects. It features the following components.

1. Motif-based representation: Instead of viewing the movement path of
an object as a sequence of low-level spatiotemporal points, we view it as a
sequence of movement motifs.



Non-Spatiotemporal Features Path Class

Size . . . Type

1 Cruiser . . . Military 〈. . .〉 −

2 Cruiser . . . Commercial 〈. . .〉 −

3 Cruiser . . . Civilian 〈. . .〉 +

4 Sailboat . . . Commercial 〈. . .〉 −

5 Sailboat . . . Civilian 〈. . .〉 −
Table 1. Original input data

2. Motif-oriented feature space transformation: The movement paths
are transformed into a feature space that is oriented on the movement motif
expressions.

3. Clustering-based motif feature extraction: Generalized motif features
are extracted from the movement paths. We perform micro-clustering to
extract higher level features.

4. High-dimensional, generalized motif-based classification: A classifier
is learned using the extracted generalized motif features.

The rest of the paper is organized as follows. In Section 2, we describe the
representation of moving object data based on movement motifs. In Section 3,
we describe the extraction of higher level features from the motif expressions.
Experimental results are shown in Section 4. We discuss some related works in
Section 5 and conclude the study in Section 6.

2 Movement Motifs

We assume that the input data consists of a set of labeled movement paths, P =
{p1, p2, . . .}, where each path is a sequence of time-related points of an object,
and each object is associated with a set of non-spatiotemporal attributes that
describe non-motion-related properties. Table 1 shows such a data set extracted
from a naval surveillance example, where each ship has non-spatiotemporal at-
tributes, such as “size” and “type”, along with the movement path. The “class”
column labels the case as either positive (suspicious) or negative (normal).

2.1 Extraction of Movement Motifs

Although the concrete spatiotemporal data could be in the precision of seconds
and inches, it is necessary to extract movement motifs at certain higher abstrac-
tion level in order to perform efficient and semantically meaningful analysis.
Consider the two ship movements shown in Fig. 1. They share similar move-
ments except an extra loop in the dashed path. To make semantically meaningful
comparisons between moving objects, we propose to extract movement motifs
at a proper level for further reasoning and classification.
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Fig. 1. Extracting motif expressions in raw paths

A movement motif is a prototypical movement pattern of an object in
either 2D or 3D space. They could be pre-defined by domain experts. Typical
examples include straight line, right turn, u-turn, loop, etc. Let there be M

defined motifs: {m1,m2, . . . ,mM}. A movement path is then transformed to a
sequence of motifs with other pieces of information associated. Fig. 1 shows this
extraction process. Expressed by a sequence of motifs, the two paths now have
much in common: They share one m2 and two m4’s, and their only difference is
an extra m1 in the dashed path.

We can assume there is a movement motif extractor (as preprocessing) that
recognizes a pre-defined set of motifs modulo some geometric transformations
(e.g., rotation, translation, resizing, etc). Normalization methods to smooth out
differences due to speed, direction, etc. are also needed. In general, each path
takes the form,

〈(mi, tstart, tend, lstart, lend), (mj , tstart, tend, lstart, lend), . . .〉 (1)

where mi is an expressed motif, tstart and tend are the starting and ending times,
and lstart and lend are the starting and ending locations in 2D or 3D space. In a
single motif expression, tstart < tend since each motif must take some non-zero
time to execute. In a full path, motifs may be expressed in overlapping times
and/or locations. A single motif maybe expressed multiple times within a single
movement path.

2.2 Motif-Oriented Feature Space

Recall that the motif extractor is able to extract some preliminary spatiotempo-
ral information about the motif expressions. Using such information, we can de-
rive a set of attributes, e.g., duration, avg speed, and generalized location.
These attributes, with proper generalization, will be very useful in analysis. Take
Fig. 2 as an example. There are three ships moving in an area that contains an
important landmark. The left and right ships have the same movement shapes
except that the left one makes its circle around a landmark. This extra piece of
information (i.e., general location) combined with the movement motif can be



Motif Expressions Class

1 (Right-Turn, 3am, l7), (U-Turn, 4pm, l2), (U-Turn, 10pm, l1) −

2 (U-Turn, 10am, l2) −

3 (Left-Turn, 6am, l7), (U-Turn, 11am, l3), (Right-Turn, 1pm, l7), (Right-Turn, 4pm, l7) +

4 (Right-Turn, 1am, l1), (U-Turn, 9am, l1), (Left-Turn, 3pm, l3), (U-Turn, 3pm, l3) −

5 (Right-Turn, 2am, l1), (Left-Turn, 9pm, l3) −
Table 2. Motif-oriented database

crucial in decision making. If we had the information that the left ship made
its movement late at night and at very slow speeds, the combination of all such
features is very telling in anomaly detection.

landmark

Fig. 2.

Let there be A such interesting attributes: {a1, a2, . . . , aA}. For each ai, we
map the set of distinct values (e.g., intervals, location coordinates, etc.) to a
set of integers between 1 and V , where V is the largest needed value. We now
represent each movement path in the following form,

〈(mi, v1, v2, . . . , vA), (mj , v1, v2, . . . , vA), . . .〉 (2)

where each tuple is a motif expression and vi is the value of attribute ai. The
set of all possible motif expressions, (mi, v1, v2, . . . , vA), plus the non-spatiotemporal
features, define the motif-oriented feature space.

Table 2 shows a sample transformation from Table 1 to a motif-oriented

database. For space consideration, we did not include the non-spatiotemporal
features. The “Path” feature in Table 1 has been transformed to sets of mo-
tif expressions here. In this particular case, we have three motifs: Right-Turn,
Left-Turn, and U-Turn. Each motif has two attributes: Time and Location. No-
tice that this model is still a simplified one for illustration of the major concepts.
In some analysis, additional attributes, such as average, maximum, or minimum
speed of the vessel, may need to be associated with a motif for successful anomaly
detection.

One could try to feed the motif-oriented database into some learning machine.
But such attempts may prove to be futile. In the raw database, motif expressions



can be recorded with high granularity values, i.e., the number of distinct values
for each attribute is very large. And since each distinct expression is mapped to
a feature in the motif-oriented feature space, this makes generalization difficult.
Take the time-of-the-day attribute as an example. If it is stored at the second
level, almost all motif expressions will have different values. Because these dif-
ferent values are stored as different features, generalization becomes essentially
impossible. Learning on a feature that is at 10:30:01am will have no bearing on
a feature that is at 10:30:02am.

Thus, a different approach is needed to overcome this problem. We propose
an extraction process named Motif Feature Extraction which will smooth
out the high granularity values and extract higher level features. For example,
the exact distance from a ship to a landmark is unimportant, and it is enough
to consider “rather close to it” in comparison with most other ships. We explain
this process in detail in the following section.

3 Motif Feature Extraction

The Motif Feature Extraction (MFE) process clusters the features belonging
to each motif attribute and extracts higher level features. Recall that each fea-
ture in the motif-oriented feature space is a tuple of the form (mi, v1, v2, . . . , vA),
where vj is the value of attribute aj . For each mi and aj combination, MFE in-
dependently clusters the values for aj . For example, suppose we are dealing with
the time-of-the-day attribute, MFE will extract representative time concepts
based on the data distribution. The result may correspond to a special period
in the time of the day, such as 1-3am, or late night.

These newly found clusters can be seen as higher level features in the data.
And thus they will replace the original high granularity values in each aj . As a
result, each feature in the motif-oriented feature space will be a tuple of the form
(mi, c1, c2, . . . , cA), where cj is the cluster for attribute aj . Because the number
of clusters will be much smaller than the number of original values for each
attribute, the feature space will be greatly reduced. We term this new reduced
feature space the MFE Feature Space.

In order to cluster the attribute values, we have to define a distance metric for
each attribute. In general, a distance metric might not exist for an attribute (e.g.,
categorical data). Fortunately, because the attributes here are spatiotemporal,
distance metrics are naturally defined. For example, attributes related to speed
or time are just one-dimensional numerical values. Attributes related to spatial
location can be measured with 2D or 3D Euclidean distance metrics.

3.1 Feature Clustering

Now that we have the distance metric for each attribute, we wish to find clus-
ters in the attribute value space. These clusters will replace the original features
and form a more compact feature space. We use a hierarchical micro-clustering



technique similar to BIRCH [33] for this task. The reason we chose a “micro-
clustering” technique is because we only want to extract some small, tight clus-
ters. Higher level semantics are captured in the hierarchies.

CF Vector & Tree First, we introduce some basic concepts. Given n features
(motif-expressions) in the meta-feature space: {f1, f2, . . . , fn}, the centroid C

and radius R are defined as follows. Recall that each feature fi is a A-dimensional
vector in the meta-feature space.

C =

∑n

i=1
fi

n
(3)

R =

(∑n

i=1
||fi − C||2

n

)

1

2

(4)

Next, we define the clustering feature (CF) vector: given n features in a
cluster, the CF vector is a triplet defined as: CF = (n,LS, SS), where n is the
number of features in the cluster, LS is the linear sum vector of the n features,
i.e.,

∑n

i=1
fi, and SS is the square sum vector of the n features, i.e.,

∑n

i=1
f2

i .
A CF tree is a height-balanced tree with two parameters: branching factor b

and radius threshold t. The tree is hierarchical in the following sense: the CF at
any node contains information for all data points in that node’s subtree. All leaf
entries have to satisfy the threshold t constraint, which restricts the radius of an
entry to be less than t. Building the CF tree is efficient, the cost of constructing
a CF tree from N points is O(N). More properties are described in [33].

3.2 MFE Feature Space

After building the CF tree from the features belonging to a single motif attribute,
we perform hierarchical agglomerative clustering on the leaves in the CF tree to
form the final clustering. This step is needed because irregularities in the data
could cause the CF tree to misplace nodes or split nodes that should belong
together [33]. The leaf nodes of the resultant hierarchical clustering are then the
micro-clusters and their centroids are the extracted features. They will replace

the original features to form a new feature space. We term this feature space the
MFE feature space.

3.3 Classification

After MFE has performed some primitive generalization in the individual dimen-
sions, we employ the use of a classifier to learn more complex generalizations on
the database. Since the MFE feature space is fairly high dimensional, we make
use of the support vector machine [10, 8] in this learning task.

4 Experiments

In this section, we test our classification system’s performance in a variety of
settings.



4.1 Data Generation

To systematically study the performance of the method under different data
distributions, we generated our own test data sets. Each data set consists of a
set of paths divided into two classes: positive and negative. Both classes use the
same background model to generate a sequence of motif expressions. The positive
class model has an additional model to insert “abnormal” motif patterns. The
models did not include non-spatiotemporal features because we only wanted to
test the motif expression components. But note that the feature space can handle
all general features.

The background model is a Gaussian mixture distribution over the possi-
ble motif expressions. It randomly chooses a set of seeds from this space and
generates a Gaussian distribution (independently for each attribute) for each
expression. During path generation, a length is randomly generated and mo-
tif expressions are then randomly generated according to the Gaussian mixture
model. The abnormal class has an additional model to generate “abnormal” mo-
tif patterns which make it different. Each pattern consists of one or more motif
expressions. This additional model is another Gaussian mixture distribution over
the motif expression space. During path generation, one or more abnormal motif
pattern(s) are inserted into the positive paths.

4.2 Experiments

For comparison, we constructed a simple baseline model, Plain-SVM. It is an
SVM trained on the motif-oriented database without MFE (i.e., Table 2). Our
model is named MFE-SVM. The branching factor b of the CF tree is set to 4 in
all experiments.

Table 3 shows experimental results in a variety of settings. The first column
lists the different data sets. All data sets had 2000 normal paths and 2000 suspi-
cious paths. Each path’s average length was 50 motif expressions. Each suspicious
path had one additional abnormal motif pattern (randomly generated from the
model), which consisted of 2 normally correlated motif expressions.

The other parameters are shown in the table. Each data set’s name is in the
form of “#M#A#V #T#S”, where M is the number of motifs, A is the number
of attributes, V is the number of values, T is the number of abnormal patterns
in the abnormal model, and S is the standard deviation in the Gaussian mixture
distributions. For the MFE-SVM, we tried 2 different numbers for the parameter
t, which adjusts the granularity of the CF tree. All SVMs used a radial kernel
and all accuracy values were the average of 5 random data sets, each with 10-fold
cross validation.

As the experiments show, classification accuracies with the MFE features
were much better than the plain method. This is easy to justify since gener-
alization in the plain case was essentially impossible (i.e., the SVM functioned
as a simple rote learner). In the MFE features, similar spatiotemporal motif
expressions were clustered together to allow the SVM to generalize.



Plain-SVM MFE-SVM MFE-SVM

Dataset (t = 40) (t = 150)

10M3A1000V 20T2.0S 52% 74% 74%

10M3A1000V 20T1.0S 57% 72% 73%

10M3A1000V 20T0.5S 80% 73% 73%

20M5A1000V 20T2.0S 50% 92% 72%

20M5A1000V 20T1.0S 51% 93% 71%

20M5A1000V 20T0.5S 58% 96% 72%

20M10A1000V 20T2.0S 51% 95% 97%

20M10A1000V 20T1.0S 51% 97% 97%

20M10A1000V 20T0.5S 57% 99% 96%

40M10A1000V 20T2.0S 50% 96% 96%

40M10A1000V 20T1.0S 53% 99% 96%

40M10A1000V 20T0.5S 58% 99% 98%

40M10A1000V 50T2.0S 50% 89% 85%

40M10A1000V 50T1.0S 51% 95% 92%

40M10A1000V 50T0.5S 62% 95% 93%

Average 55.4% 90.9% 85.6%

Table 3. Classification accuracy: on plain data sets vs. on motif-oriented data sets

Clustering Parameter In Table 3, we see that when the t parameter (radius
threshold) was adjusted higher, classification accuracies decreased. Recall t con-
trols the size of the micro-clusters in the CF trees (i.e., bigger t means bigger
clusters). In terms of motifs, a larger t means rougher granularities, or higher
generalizations, in the attribute measurements. For example, using late night

(low granularity feature) vs. {1-2am, 2-3am, . . .} (high granularity features) to
represent the time measurement. Also, note that setting t to 0 is equivalent to
using the Plain-SVM.

 100

 90

 80

 200 180 160 140 120 100 80 60 40 20

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

t

40M10A1000V50T1.0S

Fig. 3. The effect of the t parameter on classification.



Fig. 3 shows the effects of t on classification accuracies on one particular
data set. As the curve shows, accuracy peaks in the middle ranges and dips
at the two ends. In terms of generalization, the two ends denote not enough
generalization and too much generalization. The optimal setting of t is closely
tied to the data. It would be difficult to choose an optimal value a priori. One
possibility is to dynamically adjust t, on a motif-by-motif basis, using feedback
from the classifier. This is a direction for future research.

5 Related Work

Research on moving object databases (MOD) [15, 14] has been an emerging field.
There are several areas in this field that relate to our work. First is nearest neigh-
bor (NN) search [25, 5, 26, 16, 23, 12]. [25] uses a data structure similar to R-Tree
to store samplings of the moving objects. [5] uses TPR-tree [22, 27] to do NN
and also reverse NN. [26] uses R-Tree with a different metric to perform contin-
uous NN queries. However, these works are only concerned with the proximity
of moving objects in physical space. They are not concerned with higher level
concepts of movement patterns or associations to time and location values.

There are some approaches for pattern existence queries over time series data
[35, 2]. These approaches converted data into strings and used string matching
algorithms to find patterns. This is related to our motif-extraction procedure.
However, they do not address issues associated with higher-level analysis.

Clustering of moving objects [13, 18] is another area in MOD. Closely re-
lated is clustering of time series, which can be viewed as a special case of
one-dimensional spatiotemporal data [4]. There is also a work to cluster high-
dimensional data stream [1]. These works are mainly focused on clustering the
data itself, while we try to find the clusters in the meta-feature space to form a
compact and generalized feature space.

There have been many works in the spatiotemporal domain which touch
on related topics. Data structures such as TPR-tree [22], TPR*-tree [27], and
STRIPES [21] index spatiotemporal data efficiently. Query processing and near-
est neighbor queries are studied in [17, 20, 31, 29, 32, 5, 9]. These studies are fo-
cused on indexing and query processing at the level of raw points and edges. Our
study is on data mining at higher semantic levels of motif-based micro-clusters.

In data mining, there have been works which focus on finding frequent pat-
terns. [28] mines sequential patterns in spatial locations. The mined patterns
are frequent sequences of events that occur at the locations. Another data min-
ing problem is co-location mining. Each frequent co-location pattern is a set of
frequent locations associated closely by some neighborhood function. [19, 24, 30]
are works that focus on this problem. [24, 30] use Apriori-based [3] approaches
to join smaller co-location patterns together. [30] performs a more complicated
process by looking additionally at partial joins. [34] is a recent work that quickly
finds co-location patterns by using multiway joins. In comparison with such stud-
ies, this study is on building up classification models by motif feature extraction
and aggregation.



Another related field is vision [11]. In cases where direct tracking of objects
is unavailable, particle tracking techniques are appropriate. [6] provides a good
overview including tracking with RADAR. For the task of motif extraction, there
is an abundance of work under the title of segmentation and recognition [7].

6 Conclusion

In this paper, we have investigated the problem of anomaly detection in moving
objects. With recent advances in surveillance technology and the imminent need
for better protection of homeland security, automated solutions for detecting
abnormal behavior in moving objects, such as ships, planes and vehicles, have
become an important issue in intelligence and security informatics. This is a
hard problem since the pattern of movement linked with the environment can
become very complex. A primitive approach which analyzes the raw data will
have a hard time making efficient and generalized decisions.

Instead, we propose a higher-level approach which views object paths as mo-
tif expressions, where a motif is a prototypical movement pattern. By linking
the motifs with other features (both spatiotemporal and regular), we automat-
ically extract higher level features that better represent the moving objects. In
experimental testing, we see that classification using the higher level features
produced better accuracies than that without using such features.
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