
c© Copyright by Xiaolei Li, 2004

HIGH-DIMENSIONAL ONLINE ANALYTICAL PROCESSING: A MINIMAL CUBING

APPROACH

BY

XIAOLEI LI

B.S., University of Illinois at Urbana-Champaign, 2002

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2004

Urbana, Illinois

Acknowledgments

This thesis would not have been possible without the support of many people. Many thanks to my

advisor, Jiawei Han, who provided direction and discussion which were invaluable to the completion

of this thesis. Also thanks to Hector Gonzales who offered much of his time in reading and discussing

many revisions. Thanks to the anonymous reviewers of ACM SIGMOD 2003 who provided much

advise on a previous version of this work. Thanks to the University of Illinois and National Center

for Supercomputing Applications who provided the financial support for this thesis. And finally,

thanks to my parents for their encouragement and support throughout the entire process.

iii

Table of Contents

List of Figures . vi

List of Tables . vii

Chapter 1 Introduction . 1

Chapter 2 Analysis . 3
2.1 Curse of Dimensionality . 3
2.2 Computation Model . 6

Chapter 3 Precomputation of Shell Fragments . 8
3.1 Inverted Index . 8
3.2 Shell Fragments . 9

3.2.1 Computing Other Measures . 12
3.2.2 Computing with Multi-Level Dimensions . 13
3.2.3 Algorithm for Shell Fragment Computation 14

Chapter 4 Online Query Computation . 16
4.1 Query Processing . 17
4.2 Algorithm for Shell Fragment-Based Query Processing 18
4.3 Shell Fragment Grouping & Size . 19

Chapter 5 Performance Study . 21
5.1 Dimensionality and Storage Size . 21
5.2 Tuple Size and Storage Size . 22
5.3 Cardinality and Storage Size . 22
5.4 Data Skew and Storage Size . 24
5.5 Shell-Fragment Size and Storage Size . 25
5.6 Memory-Based Query Processing . 28
5.7 Disk-Based Query Processing . 30
5.8 Full Data Cube Computation . 33
5.9 Experiments with Real-World Data Sets . 35

Chapter 6 Discussion . 36
6.1 Related Work . 36
6.2 Further Implementation Considerations . 37

iv

6.2.1 Incremental Update . 37
6.2.2 Fragment Grouping . 38
6.2.3 Queries with Automated Tools . 38
6.2.4 Bitmap Indexing . 38
6.2.5 Inverted Index Compression . 39

Chapter 7 Conclusions . 40

References . 41

v

List of Figures

2.1 The curse of dimensionality on data cubes . 4

5.1 Storage size of shell fragments as a function of dimensionality: (50-C) T = 106, C =
50, S = 0, F = 3. (100-C) T = 106, C = 100, S = 2, F = 2. 22

5.2 Storage size of shell fragments as a function of tuple size: (50-C) D = 50, C =
50, S = 0, F = 3. (100-C) D = 50, C = 100, S = 2, F = 2. 23

5.3 Time needed to compute shell fragments as a function of tuple size: (50-C) D =
50, C = 50, S = 0, F = 3. (100-C) D = 50, C = 100, S = 2, F = 2. 23

5.4 Storage size of shell fragments as a function of cardinality: (25-D) D = 25, T =
106, S = 0, F = 3. (50-D) D = 50, T = 106, S = 2, F = 3. 24

5.5 Time needed to compute shell fragments as a function of cardinality: (25-D) D =
25, T = 106, S = 0, F = 3. (50-D) D = 50, T = 106, S = 2, F = 3. 25

5.6 Storage size of shell fragments as a function of skew: (50-D) D = 50, T = 106, C =
50, F = 3. (100-D) D = 100, T = 106, C = 25, F = 2. 26

5.7 Time needed to compute shell fragments as a function of skew: (50-D) D = 50, T =
106, C = 50, F = 3. (100-D) D = 100, T = 106, C = 25, F = 2. 26

5.8 Storage size of shell fragments: (50-D) T = 106, D = 50, C = 50, S = 0. (100-D)
T = 106, D = 100, C = 25, S = 2. 27

5.9 Time needed to compute shell fragments: (50-D) T = 106, D = 50, C = 50, S = 0.
(100-D) T = 106, D = 100, C = 25, S = 2. 27

5.10 Average computation time per query over 1,000 trials. T = 106, D = 10, C =
10, S = 0, I = 4. 29

5.11 Average computation time per query over 1,000 trials. T = 106, D = 20, C =
10, S = 1, I = 3. 29

5.12 Average I/Os per point query over 1,000 trials. (10-D) T = 106, D = 10, C =
10, S = 0, I = 4, Q = 0; (20-D) T = 106, D = 20, C = 10, S = 1, I = 3, Q = 0. . 31

5.13 Average I/Os per 4D subcube query over 1,000 trials. (10-D) T = 106, D = 10, C =
10, S = 0, I = 4, Q = 4; (20-D) T = 106, D = 20, C = 10, S = 1, I = 3, Q = 4. . 32

5.14 Average I/Os per query over 1,000 trials. T = 106, D = 10, C = 10, S = 0, F =
1, Q = 7− I. 33

5.15 Full cube computation time in relevance to the number of tuples 34
5.16 Full cube computation time in relevance to the number of dimensions 34

vi

List of Tables

2.1 Example cuboid on disk . 5

3.1 The Original Database . 8
3.2 Inverted Index . 9
3.3 Cuboid AB . 10
3.4 Cuboid DE . 11
3.5 A database with two measure values . 12
3.6 ID-measure array of Table 3.5 . 12

vii

Chapter 1

Introduction

Since the advent of data warehousing and online analytical processing (OLAP) [9], data cube has

been playing an essential role in the implementation of fast OLAP operations [10]. Materialization

of a data cube is a way to precompute and store multi-dimensional aggregates so that multi-

dimensional analysis can be performed on the fly. For this task, there have been many efficient cube

computation algorithms proposed, such as ROLAP-based multi-dimensional aggregate computation

[1], multiway array aggregation [24], BUC [7], H-cubing [11], and Star-cubing [22]. Since computing

the whole data cube not only requires a substantial amount of time but also generates a huge number

of cube cells, there have also been many studies on partial materialization of data cubes [12], iceberg

cube computation [7, 11, 22], computation of condensed, dwarf, or quotient cubes [19, 18, 13, 14],

and computation of approximate cubes [16, 5].

Besides large data warehouse applications, there are other kinds of applications like bioinformat-

ics, survey-based statistical analysis, and text processing that need the OLAP-styled data analysis.

However, data in such applications usually are high in dimensionality, e.g., over 100 or even 1000

dimensions but only medium in size, e.g., around 106 tuples. This kind of datasets behaves rather

differently from the datasets in a traditional data warehouse which may have about 10 dimensions

but more than 109 tuples. Since a data cube grows exponentially with the number of dimensions,

it is too costly in both computation time and storage space to materialize a full high-dimensional

data cube. For example, a data cube of 100 dimensions, each with 10 distinct values, may con-

tain as many as 11100 aggregate cells. Although the adoption of iceberg cube, condensed cube, or

approximate cube delays the explosion, it does not solve the fundamental problem.

1

In this paper, we propose a new method called shell-fragment. It vertically partitions a high

dimensional dataset into a set of disjoint low dimensional datasets called fragments. For each

fragment, we compute its local data cube. Furthermore, we register the set of tuple-ids that

contribute to the non-empty cells in the fragment data cube. These tuple-ids are used to bridge the

gap between various fragments and re-construct the corresponding cuboids upon request. These

shell fragments are pre-computed offline and are used to compute queries in an online fashion. In

other words, data cubes in the original high dimensional space are dynamically assembled together

via the fragments.

We will show that this method achieves high scalability in high dimensional space both in terms

of storage space and I/O. When full materialization of the data cube is impossible, our method

provides a reasonable solution. In addition, as our experiments show, our method’s I/O costs are

competitive with those of the materialized data cube.

The remainder of the paper is organized as follows. In Chapter 2, we present the motivation of

the paper. In Chapter 3, we introduce the shell fragment data structure and design. In Chapter

4, we describe how to compute OLAP queries using the fragments. Our performance study on

scalability, I/O, and other cost metrics is presented in Chapter 5. We discuss the related work and

the possible extensions in Chapter 6, and conclude our study in Chapter 7.

2

Chapter 2

Analysis

Numerous studies have been conducted on data cubes to promote fast OLAP. However, most

cubing algorithms have been confined to only low or medium dimensional data. We shall show

the inherent “curse of dimensionality” of data cube in this section and provide motivation for our

online computation model.

2.1 Curse of Dimensionality

The computation of data cubes, though valuable for low-dimensional databases, may not be so

beneficial for high-dimensional ones. Typically, a high-dimensional data cube requires massive

memory and disk space, and the current algorithms are unable to materialize the full cube under

such conditions. Let us examine an example.

Example 1. We generated a base database of 600,000 tuples. Each dimension had a cardinality of

100 with zipf equal to 2. The number of dimensions varies from 7 to 12 on the x-axis in Figure 2.1.

The size of the data cube generated from this base cuboid grows exponentially with the number of

dimensions as shown in Figure 2.1. The size of the full data cube reaches gigabytes when the number

of dimensions reaches 9. And it climbs to well above petabytes before it reaches 20 dimensions, not

to think about 100 dimensions.

Figure 2.1 also shows the size of an iceberg cube with minimum support of 5 for our database.

It is much smaller than the full data cube because the base cuboid contains not many tuples

and most high-dimensional cells fall below the support threshold. This sounds attractive because it

3

 1600

 1400

 1200

 1000

 800

 600

 400

 200

 0
 12 11 10 9 8 7

C
ub

e
S

iz
e

(M
B

)

Dimensionality

Full Data Cube
Iceberg Cube, Minsup=5

Quotient Cube

Figure 2.1: The curse of dimensionality on data cubes

may substantially reduce the computation time and disk usage while keeping only the “meaningful”

results. However, there are several weaknesses. First, if a high-dimensional cell has the support

already passing the iceberg threshold, it cannot be pruned by the iceberg condition and will still

generate a huge number of cells. For example, a base-cuboid cell: “(a1, a2, . . . , a60):5” (i.e., with

count 5) will still generate 260 iceberg cube cells. Second, it is difficult to set up an appropriate

iceberg threshold. A too low threshold will still generate a huge cube, but a too high one may

invalidate many useful applications. Third, an iceberg cube cannot be incrementally updated.

Once an aggregate cell falls below the iceberg threshold and is pruned, incremental update will not

be able to recover the original measure.

The situation is not much better for condensed, dwarf, or quotient cubes [19, 18, 13, 14].

The Dwarf cube introduced in [18] compresses the cuboid cells by exploiting sharing of prefixes

and suffixes. Its size complexity was shown to be O(T 1+1/(logd C)) [17] where d is the number of

dimensions, C is cardinality, and T is number of tuples. In high dimensional data where d is large,

logd C could become quite small. In which case, the exponent becomes quite large and the cube

size still explodes.

4

For quotient cubes [13, 14], compression can only be effective when the corresponding measures

are the same within a local lattice structure, which has limited pruning power as shown in Figure

2.1.

Lastly, there is a substantial I/O overhead for accessing a full materialized data cube. Cuboids

are stored on disk in some fixed order, and that order might be incompatible with a particular

query. Processing such queries may need a scan of the entire corresponding cuboid.

Table 2.1 shows an example cuboid as it is stored on disk.

A B C D E F count()

1 2 1 5 2 1 2

1 2 1 5 3 2 1

2 1 6 1 2 1 10

2 3 6 1 3 1 1

2 3 7 5 3 1 3

Table 2.1: Example cuboid on disk

Suppose a query were to compute all aggregate combinations (i.e., data cube) of dimensions A,

B, C, and D given values 2 and 1 for dimensions E and F. Because the cuboid is stored on disk with

the sort order of dimension A first, B second, etc., it is necessary to basically scan the entire cuboid

in order to answer the query. In other words, the selection on dimensions E and F provides no real

selectivity as far as I/O is concerned.

One could avoid reading the entire cuboid if there were multi-dimensional indices constructed

on all cuboids. But in a high-dimensional database with many cuboids, it might not be practical

to build all these indices. Furthermore, reading via an index implies random access for each row in

the cuboid, which could turn out to be more expensive than a sequential scan of the raw data.

The above discussion discloses the following fundamental problems of the high-dimensional cube

model, independent of its implementation and compression techniques.

1. The bottleneck is at the curse of dimensionality on both cube size and computation time. A

full data cube of high dimensionality needs massive storage space and unrealistic computation

time. The cost grows exponentially along with the number of dimensions.

2. Variations of the current cube model do not provide an effective solution. An iceberg cube

5

cannot be incrementally updated and its threshold value cannot be readily adjusted down-

wards. The compression of condensed, quotient and dwarf cubes achieves only limited benefits

and only delay the ultimate problem.

3. There is a substantial overhead even for accessing the computed results when the size of a

cube is large. Even if there is enough disk space to store the full cube, the time needed to

access the computed cube is nontrivial. No matter how many indices one constructs and how

one physically stores the data on disk, a query is likely to require multiple disk I/Os.

A possible solution, which has been implemented in some commercial data warehouse systems

(e.g., Oracle Express), is to compute a thin cube shell. For example, one might compute all cuboids

with 3 dimensions or less in a 60-dimensional data cube. There are two disadvantages to this

approach. First, it still needs to compute
(60

3

)

+
(60

2

)

+ 60 = 36050 cuboids. Second, it does not

support high-dimensional OLAP because (1) it does not support OLAP on 4 or more dimensions,

and (2) it cannot support drilling along even three dimensions, such as (A4, A5, A6), on a subset

of data selected based on the constants provided in three other dimensions, such as (A1, A2, A3),

which requires the computation of the corresponding 6-D cuboid.

2.2 Computation Model

These observations lead us to consider possibly an online computation model of data cubes. A

completely online computation algorithm that computes OLAP query-based cuboids will lead us

almost back to the 1980s. It is quite expensive to online scan a high-dimensional database, extract

the relevant dimensions, and then perform on-the-spot aggregation. And such computation provides

essentially no real support of fast OLAP operations. Instead, a semi-online computation model with

certain pre-processing seems to be a more viable solution. That is, given a base cuboid, some quick

computation can be done first and its results stored. After that, a query can then be computed

online using the pre-processed data.

Before delving deeper into the semi-online computation model, we make the following observa-

tion about OLAP in high-dimensional space. Although a data cube may contain many dimensions,

6

most OLAP operations are performed only on a small number of dimensions at a time. In other

words, an OLAP query is likely to ignore many dimensions (i.e., treating them as irrelevant), fix

some dimensions (e.g., using query constants as instantiations), and leave only a few to be ma-

nipulated (for drilling, pivoting, etc.). This is because it is not realistic for anyone to comprehend

the changes of thousands of cells involving tens of dimensions simultaneously in a high-dimensional

space at the same time. Instead, it is more natural to first locate some cuboids by certain selections

and then drill along one or two dimensions to examine the changes of a few related dimensions.

Most analysts only need to examine the space of a small number of dimensions once they select

them.

7

Chapter 3

Precomputation of Shell Fragments

Stemming from the above motivation, we propose a new approach, called shell fragment, and two

new algorithms: one for computing shell fragment cubes, and one for query processing with the

fragment cubes. This new approach will be able to handle OLAP in databases of extremely high

dimensionality. It explores the inverted index well-studied in information retrieval [4] and value-list

index in databases [8]. The general idea is to partition the dimensions into disjoint sets called

fragments. The base dataset is projected onto each fragment, and data cubes are fully materialized

for each fragment. With the precomputed shell fragment cubes, one can dynamically assemble

and compute cuboid cells of the original dataset online. This is made efficient by set intersection

operations on the inverted indices.

3.1 Inverted Index

To illustrate the algorithm, a tiny database, Table 3.1, is used as a running example. Let the cube

measure be count(). Other measures will be discussed later.

tid A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

Table 3.1: The Original Database

The inverted index is constructed as follows. For each attribute value in each dimension, we

8

register a list of tuple IDs (tids) associated with it. For example, attribute value a2 appears in

tuples 4 and 5. The tid-list for a2 then contains exactly 2 items, namely 4 and 5. The resultant

inverted index is shown in Table 3.2.

Attribute Value TID List List Size

a1 1 2 3 3
a2 4 5 2
b1 1 4 5 3
b2 2 3 2
c1 1 2 3 4 5 5
d1 1 3 4 5 4
d2 2 1
e1 1 2 2
e2 3 4 2
e3 5 1

Table 3.2: Inverted Index

Lemma 1 The inverted index table uses the same amount of storage space as the original database.

Rationale. Intuitively, we can think of Table 3.1 as storing the common TIDs for attributes and

Table 3.2 as storing the common attribute values for tuples. Formally, suppose we have a database

of T tuples and D dimensions. To store it as shown in Table 3.1 would need D × T integers. Now

consider the inverted index. Each tuple ID is associated with D attributes and thus will appear D

times in the inverted index. Since we have T tuple IDs in total, the entire inverted index will still

only need D × T integers1.

3.2 Shell Fragments

The inverted index in Table 3.2 can be generalized to multiple dimensions where one can store tid-

lists for combinations of attribute values across different dimensions. This leads to the computation

of shell fragments of a data cube as follows.

All the dimensions of a data set are partitioned into independent groups, called fragments. For

each fragment, we compute the complete local data cube while retaining the inverted indices. For

1We assume that a TID and a value take the same unit space (e.g., 4 bytes). Otherwise, the total space usage will
differ proportionally to their unit space difference.

9

example, for a database of 60 dimensions, A1, A2, . . . , A60, we first partition the 60 dimensions into

20 fragments of size 3: (A1, A2, A3), (A4, A5, A6), . . ., (A58, A59, A60). For each fragment, we com-

pute its full data cube while recording the inverted indices. For example, in fragment (A1, A2, A3),

we would compute seven cuboids: A1, A2, A3, A1A2, A2A3, A1A3, A1A2A3. An inverted index is

retained for each cell in the cuboids.

The benefit of this model can be seen by a simple calculation. For a base cuboid of 60 dimensions,

there are only 7×20 = 140 cuboids to be computed according to the above shell fragment partition.

Compare this to 36050 cuboids for the cube shell of size 3, the savings are enormous.

Notice that the above fragment partition is simply based on the ordering of the dimensions. A

more desirable partition can be based on the popular dimension groupings. Such information can

be obtained from the past history or expert expectation of the OLAP queries. Furthermore, one

may wonder whether the partition should be based on groups of size 2, 4, or even larger, instead

of just size 3 as above. These issues are discussed in Section 4.3.

Let us return to our running example.

Example 2. Suppose we are to compute the shell fragments of size 3. We first divide the 5

dimensions into 2 fragments, namely (A, B, C) and (D, E). For each fragment, we compute the

complete data cube by intersecting the tid-lists in Table 3.2 in a bottom-up depths-first order in

the cuboid lattice (as seen in [7]). For example, to compute the cell {a1 b2 * }, we intersect the

tuple ID lists of a1 and b2 to get a new list of {2, 3}. Cuboid AB is shown in Table 3.3.

Cell Intersection Tuple ID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1
a1 b2 1 2 3 ∩ 2 3 2 3 2
a2 b1 4 5 ∩ 1 4 5 4 5 2
a2 b2 4 5 ∩ 2 3 ∅ 0

Table 3.3: Cuboid AB

After computing cuboid AB, we can then compute cuboid ABC by intersecting all pairwise com-

binations between Table 3.3 and the row c1 in Table 3.2. Notice that because the entry a2 b2 is

empty, it can be effectively discarded in subsequent computations based on the Apriori property [2].

The same process can be applied to computing fragment (D, E), which is completely independent

10

from computing (A, B, C). Cuboid DE is shown in Table 3.4.

Cell Intersection Tuple ID List List Size

d1 e1 1 3 4 5 ∩ 1 2 1 1
d1 e2 1 3 4 5 ∩ 3 4 3 4 2
d1 e3 1 3 4 5 ∩ 5 5 1
d2 e1 2 ∩ 1 2 2 1

Table 3.4: Cuboid DE

The computed shell fragment cubes with their inverted indices will be used to facilitate online

query computation. The question is how much space is needed to store them. In our analysis, we

assume an array-like data structure to store the TIDs. If the cardinalities of the dimensions are

small, bitmaps can be employed to save space and speed up operations. This and other techniques

will be discussed in Chapter 6.

Lemma 2 Given a database of T tuples and D dimensions, the amount of memory needed to store

the shell fragments of size F is O(T (D
F

)(2F − 1)).

Rationale. Consider how many times each tuple ID will be stored in the shell fragments. In the

1-dimensional cuboids of the shell fragments, Lemma 1 tells us each tuple ID will appear D = D

F

(

F

1

)

times. Now consider the 2-dimensional cuboids. Each tuple ID is associated with D dimensions

and thus will be stored anytime a cuboid is a subset of these D dimensions. There are exactly

dD
F
e
(

F

2

)

such 2-dimensional cuboids. Sum over all cuboids (sizes 1 to F), we see that the entire

shell fragment will need O(T
∑

F

i=1

(

dD
F
e
(

F

i

)

)

) = O(T (D
F

)(2F − 1)) storage space.

Notice that for a database with T tuples, no matter how many combinations of its attributes

there are, any one cuboid will just contain all the possible unique TIDs, which can never be bigger

than T . This can be easily seen from column 3 of Tables 3.3 and 3.4, where |AB| = 5 (the number

of tuples in the database), as well as |DE| = 5.

Based on Lemma 2, for our 60-dimensional base cuboid of T tuples, the amount of space needed

to store the shell fragment of size 3 is on the order of T (60
3)(23 − 1) = 140T . Suppose there are

106 tuples in the database and each tuple ID takes 4 bytes. The space needed to store the shell

fragments of size 3 is roughly estimated as 140× 106 × 4 = 560 MB.

11

3.2.1 Computing Other Measures

For the cube with only the tuple-counting measure, there is no need to reference the original

database for measure computation since the length of the tid-list is equivalent to tuple-count. “But

what about other measures, such as average()?” The solution is to keep an ID measure array

instead of the original database. For example, to compute average(), one just needs to keep an

array of three elements: (tid, count, sum). The measures of every aggregate cell can be computed

by accessing this ID measure array only. Considering a database with 106 tuples, each taking 4

bytes for tid and 8 bytes for two measures, the ID measure array is only 12 MB, whereas the

corresponding database of 60 dimensions is (60 + 3)× 4× 106 = 252 MB. To illustrate the design

of the ID measure array, let us look at the following example.

Example 3. Suppose Table 3.5 shows an example database where each tuple has 2 associated

values, count and sum.

tid A B C D E count sum

1 a1 b1 c1 d1 e1 5 70

2 a1 b2 c1 d2 e1 3 10

3 a1 b2 c1 d1 e2 8 20

4 a2 b1 c1 d1 e2 5 40

5 a2 b1 c1 d1 e3 2 30

Table 3.5: A database with two measure values

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

Table 3.6: ID-measure array of Table 3.5

To compute a data cube for this database with the measure avg() (obtained by sum()/count()),

we need to have a tid-list for each cell: {tid1, . . . , tidn}. Because each tid is uniquely associated with

a particular set of measure values, all future computations just need to fetch the measure values

associated with the tuples in the list. In other words, by keeping an array of the ID-measures in

12

memory for online processing, one can handle any complex measure computation. Table 3.6 shows

what exactly should be kept, which is substantially smaller than the database itself.

Based on the above analysis, for a base cuboid of 60 dimensions with 106 tuples, our precomputed

shell fragments of size 3 will consist of 140 cuboids plus one ID measure array, with the total

estimated size of roughly 560 + 12 = 572 MB in total. In comparison, a shell cube of size 3 will

consist of 36050 cuboids, with estimated roughly 144 GB in size. A full 60-dimensional cube will

have 260 ≈ 1018 cuboids, with the total cube size beyond the summation of the capacities of all

storage devices. In this context, both storage space and computation time of shell fragment are

negligible in comparison with those of the complete data cube. Thus our high-dimensional OLAP on

the precomputed shell fragment can really be considered as high-dimensional OLAP with minimal

cubing.

3.2.2 Computing with Multi-Level Dimensions

In many real world datasets where there are semantic meanings attached to the data, dimensions

are sometimes structured in levels. For instance, a location dimension might have levels such

as country, state, and city. In essence, these levels are three separate dimensions, but their

combinations do not behave as regular dimensions. That is, some combination of country vs.

state or country vs. city do not make semantic sense. For example, the pairing of France and

Chicago is semantically invalid and results in an empty set.

To incorporate these multi-level dimensions into our model, we simply treat them as separate

dimensions. The question is how to avoid computing combinations that do not make semantic

sense in the shell fragments. There are two methods to accomplish this. First, we could explicitly

enforce that levels belonging to the same dimension be in different fragments. As a result, we

avoid computing all combinations, valid or invalid, between them. This is rather crude but it gets

the job done. The second method is to allow these levels to behave just as regular dimensions.

When computing the shell-fragment cubes, they can belong to any grouping. The only difference

is that we have some domain expert that will disallow semantically invalid combinations during

the fragment computation process. Although those invalid combinations will result in empty sets

13

anyway, the domain expert will know beforehand and save quite a bit of needless work.

3.2.3 Algorithm for Shell Fragment Computation

Based on the above discussion, the algorithm for shell fragment computation can be summarized

as follows.

Algorithm 1 (Frag-Shells) Compute shell fragments on a given high-dimensional base table

(i.e., base cuboid).

Input: A base cuboid B of n dimensions: (A1, . . . , An).

Output: (1) a set of fragment partitions {P1, . . . Pk} and their corresponding (local) fragment

cubes {S1, . . . , Sk}, where Pi represents some set of dimension(s) and P1 ∪ . . . ∪ Pk are all the n

dimensions, and (2) an ID measure array if the measure is not tuple-count.

Method:

1. partition the set of dimensions (A1, . . . , An) into

a set of k fragments P1, . . . , Pk

2. scan base cuboid B once and do the following {

3. insert each 〈tid, measure〉 into ID measure array

4. for each attribute value ai of each dimension Ai

5. build an inverted index entry: 〈ai, tidlist〉

6. }

7. for each fragment partition Pi

8. build a local fragment cube Si by

intersecting their corresponding tid-lists

and computing their measures

Note: For Line 1, Section 4.3 will discuss what kind of partitions may achieve good performance.

For Line 3, if the measure is tuple-count, there is no need to build ID measure array since the length

of the tid-list is tuple-count ; for other measures, such as avg(), the needed components should be

saved in the array, such as sum() and count().

14

It is possible to use the above algorithm to compute the full data cube: If we let a single

fragment include all the dimensions, the computed fragment cube is exactly the full data cube.

The order of computation in the cuboid lattice can be bottom-up and depth-first, similar to that

of [7]. This ordering also allows for Apriori pruning in the case of iceberg cubes. We name this

algorithm Frag-Cubing.

15

Chapter 4

Online Query Computation

Given the pre-computed shell fragments, one can perform OLAP queries on the original data space.

In general, there are two types of queries: (1) point query and (2) subcube query.

A point query seeks a specific cuboid cell in the original data space. All the relevant dimen-

sions in the query are instantiated with some particular values. In an n-dimensional data cube

(A1, A2, . . . , An), a point query is in the form of 〈a1, a2, . . . , an : M〉, where each ai specifies a value

for dimension Ai and M is the inquired measure. For dimensions that are irrelevant or aggregated,

one can use * as its value. For example, the query 〈a2, b1, c1, d1, ∗ : count()〉 for the database

in Table 3.1 is a point query where the first four dimensions are instantiated to a2, b1, c1, and d1

respectively, the last dimension is irrelevant, and count() is the inquired measure.

A subcube query seeks a set of cuboid cells in the original data space. It is one where at least one

of the relevant dimensions in the query is inquired. In an n-dimensional data cube (A1, A2, . . . , An),

a subcube query is in the form of 〈a1, a2, . . . , an : M〉, where at least one ai is marked ? to denote

that dimension Ai is inquired. For example, the query 〈a2, ?, c1, ∗, ? : count()〉 for the

database in Table 3.1 is one where the first and third dimension values are instantiated to a2 and

c1 respectively, the fourth is irrelevant, and the second and the fifth are inquired. The subcube

query computes all possible value combinations of the inquired dimension(s). It essentially returns

a local data cube consisting of the inquired dimensions.

Conceptually, a point query can be seen as a special case of the subcube query where the number

of inquired dimensions is 0. On the other extreme, a full-cube query is a subcube query where the

number of instantiated dimensions is 0.

16

4.1 Query Processing

The general query for an n-dimensional database is in the form of 〈a1, a2, . . . , an : M〉. Each ai

has 3 possible values: (1) an instantiated value, (2) aggregate *, (3) inquire ?. The first step is to

gather all the instantiated ai’s if there are any. We examine the shell fragment partitions to check

which ai’s are in the same fragments. Once that is done, we retrieve the tid-lists associated with

the instantiations at the highest possible aggregate level. For example, suppose aj and ak were in

the same fragment, we would then retrieve the tid-list from the (aj , ak) cuboid cell. The obtained

tid-lists are intersected to derive the instantiated base table. If the table is empty, query processing

stops and returns the empty result.

If there are no inquired dimensions, we simply fetch the corresponding measures from the

ID measure array and finish the point query. If there is at least one inquired dimension, we

continue as follows. For each inquired dimension, we retrieve all its possible values and their

associated tid-lists. If two or more inquired dimensions are in the same fragment, we retrieve

all their pre-computed combinations and the tid-lists. Once these tid-lists are retrieved, they are

intersected with the instantiated base table to form the local base cuboid of the inquired and

instantiated dimensions. Then, any cubing algorithm can be employed to compute the local data

cube.

Example 4. Suppose a user wants to compute the subcube query, {a2, b1, ?, *, ?: count()},

for our database in Table 3.1. The shell fragments are pre-computed as described in Section 3.2.

We first fetch the tid-list of the instantiated dimensions by looking at cell (a2, b1) of cuboid AB.

This returns (a2, b1):{4, 5}. Note that if there were no inquired dimensions in the query, we

would finish the query here and report 2 as the final count.

Next, we fetch the tid-lists of the inquired dimensions: C and E. These are {(c1:{1, 2, 3, 4,

5})} and {(e1:{1, 2}), (e2:{3, 4}), (e3:{5})}. Intersect them with the instantiated base

and we get {(c1:{4, 5})} and {(e2:{4}), (e3:{5})}. This corresponds to a base cuboid of two

tuples: {(c1, e2), (c1, e3)}. Any cubing algorithm can take this as input and compute the

2-D data cube.

17

4.2 Algorithm for Shell Fragment-Based Query Processing

The above discussion leads to our algorithm for processing both point query and subcube query.

Algorithm 2 (Frag-Query) Processing of point and subcube queries using shell fragments.

Input: (1) a set of precomputed shell fragments for partitions {P1, . . . , Pk}, where Pi represents

some set of dimension(s), and P1 ∪ . . .∪Pk are all the n dimensions; (2) an ID measure array if the

measure is not tuple-count ; and (3) a query of the form 〈a1, a2, . . . , an : M〉 where each ai is either

instantiated, aggregated, or inquired for dimension Ai. M is the measure of the query.

Output: The computed measure(s) if the query is a point query, i.e., containing only instantiated

dimensions. Otherwise, the data cube whose dimensions are the inquired dimensions.

Method:

1. for each Pi {

// instantiated dimensions

2. if Pi ∩ {a1, . . . , an} includes instantiation(s)

3. Di ← Pi ∩ {a1, . . . , an} with instantiation(s)

4. BDi
← cells in Di with associated tid-lists

// inquired dimensions

5. if Pi ∩ {a1, . . . , an} includes inquire(s)

6. Qi ← Pi ∩ {a1, . . . , an} with inquire(s)

7. RQi
← cells in Qi with associated tid-lists

}

8. if there exists at least one non-null BDi

9. Bq ← merge base(BD1
, . . . , BDk

)

10. if there exists at least one non-null RQi

11. Cq ← compute cube(Bq, RQ1
, . . . , RQk

)

Note: Function merge base() is implemented by intersecting the corresponding tid-lists of the

BDi
’s. Function compute cube() takes the merged instantiated base and the inquired dimensions

as input, derive the relevant base cuboid, and use the most efficient cubing algorithm to compute

18

the multi-dimensional cube. The ID measure array will be referenced after the cube is derived in

this compute cube() function.

Algorithm 2 covers all the possible OLAP queries. In the case of point query, there exist no

inquired dimensions, and Lines 6-7 and 11 are not executed. The subcube query executes all the

lines of the algorithm. In the case of full-cube query, there are no instantiated dimensions, Lines

3-4 and 9 will not be executed. Additionally, Bq is instantiated to all and the base cuboid derived

is essentially the original database.

4.3 Shell Fragment Grouping & Size

The decision of which dimensions to group into the same fragments can be made based on the

semantics of the data or expectations of future OLAP queries. The goal is to have many dimensions

of a query fall into the same fragments. This makes full use of the pre-computed aggregates and

saves both time and I/O.

The decision of how many dimensions to group into the same fragment can be analyzed more

carefully. Suppose each fragment contains an equal number of dimensions and let that number be

F . If F is too small, the space required to store the fragment cubes will be small but the time

needed to compute queries online will be long. On the other hand, if F is big, online queries can

be computed quickly but the space needed to store the fragments will be enormous.

The question is whether there exists a F such that there is a good balance between the amount

of space allocated to store the shell fragment cubes and the cost (both time and I/O) of computing

queries online.

First, we examine how space grows as a function of F . Lemma 2 describes the exact function.

It is exponential with respect to F . However, notice that when F is small, the growth is actually

sub-linear. The original database has size O(T D). When F = 2, the memory usage is O(3/2T D),

smaller than the linear growth size of O(2T D). In fact, when F ≤ 4, the growth in space is

sub-linear.

Second, we examine the implications of F on query performance. In general, a too small size,

19

such as 1, may lead to fetching and processing of rather long tid-lists. Just having a F of 2 could

greatly reduce this, because many aggregates are pre-computed. Combine this intuition with the

previous paragraph, 2 ≤ F ≤ 4 seems like a reasonable range.

20

Chapter 5

Performance Study

There are two major costs associated with our proposed method: (1) the cost of computing and

storing the shell fragment cubes, and (2) the cost of retrieving tid-lists and computing the queries

online. In this section, we perform a thorough analysis of these costs. All algorithms were imple-

mented using C++ and all the experiments were conducted on an Intel Pentium-4 2.6CGHz system

with 1GB of PC3200 RAM. The system ran Linux with the 2.6.3 kernel and gcc 3.3.2.

As a notational convention, we use D to denote the number of dimensions, C the cardinality of

each dimension, T the number of tuples in the database, F the size of the shell fragment, I the

number of instantiated dimensions, Q the number of inquired dimensions, and S the skew or zipf

of the data. Minimum support level is 1 in all experiments.

5.1 Dimensionality and Storage Size

The first cost we are concerned with is the amount of space needed to store the shell-fragment cubes.

Specifically, how it scales as dimensionality grows. Figure 5.1 shows the effect as dimensionality

increases from 20 to 80. The number of tuples in both datasets were 106. The first dataset, 50-

C, has cardinality of 50, skew of 0, and shell-fragment size 3. The second dataset, 100-C, has

cardinality of 100, skew of 2, and shell-fragment size 2. The good news is that storage space grows

linearly as dimensionality grows. This is expected because additional dimensions only add more

fragment cubes, which are independent of the others.

21

 1000

 750

 500

 250

 0
 80 70 60 50 40 30 20

S
to

ra
ge

 S
iz

e
(M

B
)

Dimensionality

50-C
100-C

Figure 5.1: Storage size of shell fragments as a function of dimensionality: (50-C) T = 106, C =
50, S = 0, F = 3. (100-C) T = 106, C = 100, S = 2, F = 2.

5.2 Tuple Size and Storage Size

Another scalability issue we are concerned with is how tuple size affects the shell-fragment cubes.

Figures 5.2 and 5.3 shows the effects as the number of tuples grows from 250,000 to 1,500,000. The

first dataset, 50-C, has 50 dimensions, cardinality of 50, skew of 0, and shell-fragment size of 3.

The second dataset, 100-C, has 50 dimensions, cardinality of 100, skew of 2, and shell-fragment

size of 2. As observed in both figures and datasets, as the number of tuple increases, the growth in

memory to store and time to compute the shell-fragment cubes is linear. This is expected because

additional tuples only add additional TIDs to be stored in the tid-lists. Although each additional

TID will be stored multiple times across different fragments, the number of times it will be stored

is linear with respect to the number of shell fragments.

5.3 Cardinality and Storage Size

Cardinality is the number of distinct values in a dimension. Its value may not have the profound

impact as the number of dimensions, but it is still very important in determining overall scalability

22

 700

 600

 500

 400

 300

 200

 100
 1500 1250 1000 750 500 250

S
to

ra
ge

 S
iz

e
(M

B
)

Tuples (1000s)

50-C
100-C

Figure 5.2: Storage size of shell fragments as a function of tuple size: (50-C) D = 50, C = 50, S =
0, F = 3. (100-C) D = 50, C = 100, S = 2, F = 2.

 250

 200

 150

 100

 50

 0
 1500 1250 1000 750 500 250

R
un

tim
e

(S
ec

on
ds

)

Tuples (1000s)

50-C
100-C

Figure 5.3: Time needed to compute shell fragments as a function of tuple size: (50-C) D = 50, C =
50, S = 0, F = 3. (100-C) D = 50, C = 100, S = 2, F = 2.

23

of the proposed method. Figures 5.4 and 5.5 show the effect as cardinality of each dimension

increases from 40 to 100. The first dataset, 25-D, has 106 tuples, 25 dimensions, skew of 0, and

shell-fragment size of 3. The second dataset, 50-D, has 106 tuples, 50 dimensions, skew of 2,

and shell-fragment size of 2. As the two figures show for the two datasets, the amount of storage

space and computation time of the shell fragments grow linearly or even sub-linearly as a function of

cardinality. The increases come from more combinations of dimensional values in the shell fragment

data cubes. The growth is not exponential because the total number of tuples is kept constant.

As a result, the datasets also grew more sparse. Had the number of tuples increased at the same

“rate” as cardinality, growth in storage size and time would probably have been greater.

 700

 600

 500

 400

 300

 200
 100 90 80 70 60 50 40

S
to

ra
ge

 S
iz

e
(M

B
)

Cardinality

25-D
50-D

Figure 5.4: Storage size of shell fragments as a function of cardinality: (25-D) D = 25, T =
106, S = 0, F = 3. (50-D) D = 50, T = 106, S = 2, F = 3.

5.4 Data Skew and Storage Size

The standard measure of value distribution in synthetic datasets is the zipf measure. A zipf of 0

means the values in a dimension are uniformly distributed across all possible values. A higher zipf

means the values have a larger tendency to lie around one or more particular center values in the

24

 250

 200

 150

 100

 50
 100 90 80 70 60 50 40

R
un

tim
e

(S
ec

on
ds

)

Cardinality

25-D
50-D

Figure 5.5: Time needed to compute shell fragments as a function of cardinality: (25-D) D =
25, T = 106, S = 0, F = 3. (50-D) D = 50, T = 106, S = 2, F = 3.

possible range. In our experiments shown in Figures 5.6 and 5.7, the number of centers was fixed

at 1 while the zipf value ranged from 0.0 to 3.0. The 2 datasets tested were 50-D and 100-D. 50-D

has 106 tuples, 50 dimensions, cardinality of 25, and shell fragment size of 3. 100-D has 106 tuples,

100 dimensions, cardinality of 25, and shell fragment size of 2. In both datasets, the storage size

is minimally affected until zipf reaches 2.0. Additionally, the time to compute the shell fragment

cubes decreased as skew increased.

5.5 Shell-Fragment Size and Storage Size

As discussed in Section 4.3, a fragment size between 2 and 4 strikes a good balance between storage

space and computation time. In this and the next couple of sections, we provide some test results

to confirm that intuition.

Figure 5.8 shows the storage size of the shell fragment cubes. Figure 5.9 shows the time needed

to compute them. Our experiments were conducted on two databases. The first, 50-D, has 106

tuples, 50 dimensions, cardinality of 50, and no skew. The second, 100-D, has 106 tuples, 100

25

 600

 575

 550

 525

 500

 475

 3 2.5 2 1.5 1 0.5 0

S
to

ra
ge

 S
iz

e
(M

B
)

Skew (Zipf)

50-D
100-D

Figure 5.6: Storage size of shell fragments as a function of skew: (50-D) D = 50, T = 106, C =
50, F = 3. (100-D) D = 100, T = 106, C = 25, F = 2.

 160

 140

 120

 100

 80

 60

 40

 3 2.5 2 1.5 1 0.5 0

R
un

tim
e

(S
ec

on
ds

)

Skew (Zipf)

50-D
100-D

Figure 5.7: Time needed to compute shell fragments as a function of skew: (50-D) D = 50, T =
106, C = 50, F = 3. (100-D) D = 100, T = 106, C = 25, F = 2.

26

 1000

 900

 800

 700

 600

 500

 400

 300

 3 2 1

S
to

ra
ge

 S
iz

e
(M

B
)

Shell Fragment Size

50-D
100-D

Figure 5.8: Storage size of shell fragments: (50-D) T = 106, D = 50, C = 50, S = 0. (100-D)
T = 106, D = 100, C = 25, S = 2.

dimensions, cardinality of 25, and zipf of 2. The shell-fragment size varies from 1 to 3.

 150

 100

 50

 10
 3 2 1

R
un

tim
e

(S
ec

on
ds

)

Shell Fragment Size

50-D
100-D

Figure 5.9: Time needed to compute shell fragments: (50-D) T = 106, D = 50, C = 50, S = 0.
(100-D) T = 106, D = 100, C = 25, S = 2.

27

The sub-linear growth with respect to F ≤ 3 as mentioned in Section 4.3 is confirmed here,

both in space and time. This is good news because as we will show in the next few sections, overall

performance is improved as F increases.

5.6 Memory-Based Query Processing

As mentioned previously, the number of tuples in the databases we are dealing with is in the order

of 106 or less. In statistics studies, it is not unusual to find datasets with thousands of dimensions

but less than one thousand tuples. Thus, it is reasonable to suggest that the shell fragment cubes

could fit inside main memory. Figure 5.8 shows with F equaling 3 or less, the shell fragments for

50 and 100 dimensional databases are under 1GB in size with 106 tuples.

In addition, recall our observation that many OLAP operations in high dimensional spaces only

revolve around a few dimensions at a time. Most analysis will pin down a small set of dimensions

and explore combinations within the set. Through caching of the data warehouse system, only the

relevant dimensions and their shell fragments need to reside in main memory.

With the shell fragments in memory, we can perform OLAP on the database with pure in-

memory processes. Note that this would be impossible had we chose to materialize the full data

cube. Even with a small tuple count, a data cube with 50 or more dimensions requires petabytes

and cannot possibly be stored in main memory.

In this section, we examine the implications of F on the speed of in-memory query processing.

In this and the next section, we intentionally chose to have small C values in order to make the

subcube queries meaningful. Otherwise in sparse uniform datasets, a random instantiation often

leads to an empty result.

Figure 5.10 shows the time needed to compute point and subcube queries with the shell frag-

ments in memory. The Frag-Cubing algorithm is used to compute the online data cubes. The

database had 106 tuples, 10 dimensions of cardinality 10 each, and 0 zipf. Each query had 4 ran-

domly chosen instantiated dimensions, and 0 (or 2 or 4) inquired dimensions. Other dimensions are

irrelevant. The times shown are averages of 1,000 such random queries. The 2D subcube queries

returned a table with 84 rows on average, and the 4D subcube queries returned a table with 901

28

 60

 50

 40

 30

 20

 10

 0
 4 3 2 1

R
un

tim
e

(M
ill

is
ec

on
ds

)

Shell Fragment Size

Point Query
2D Subcube Query
4D Subcube Query

Figure 5.10: Average computation time per query over 1,000 trials. T = 106, D = 10, C = 10, S =
0, I = 4.

 60

 50

 40

 30

 20

 10

 0
 4 3 2 1

R
un

tim
e

(M
ill

is
ec

on
ds

)

Shell Fragment Size

Point Query
2D Subcube Query
4D Subcube Query

Figure 5.11: Average computation time per query over 1,000 trials. T = 106, D = 20, C = 10, S =
1, I = 3.

29

rows on average.

Figure 5.11 shows a similar experiment on another database. The difference is that this database

had 20 dimensions and each query had 3 randomly chosen instantiated dimensions. The 2D subcube

queries returned a table with 104 rows on average, and the 4D subcube queries returned a table

with 2,593 rows on average.

The results show fast response time, with 50ms or less for various types of queries. They show

that having F ≥ 2 results in a non-trivial speed-up during query processing over F = 1. If any

of the instantiated dimensions are in the same fragment(s), the processing of the tid-lists is much

quicker due to their shorter lengths. If the inquired dimensions are in the same fragment(s), the

effects are less obvious because the lengths of the tid-lists remain the same. The only difference is

that they have been pre-intersected.

The speed-up of F ≥ 2 is slightly less in Figure 5.11 than in Figure 5.10, partly because there

are more dimensions overall. As a result, it is less likely for the instantiated dimensions to be in

the same fragment. In real world datasets where there are semantics attached to the data, the

fragments will be presumably constructed so that they might be better matched to the queries.

5.7 Disk-Based Query Processing

I/O with respect to shell-fragment size: In the case that the shell fragments do not fit inside

main memory, the individual tid-lists relevant to the query will have to be fetched from disk. In this

section, we study the effects of F on these I/O costs. With a bigger F , more relevant dimensions

in a query are likely to be in the same fragment. This results in retrieval of shorter tid-lists from

disk because the multi-dimensional aggregates are already computed and stored.

Using the same two databases from the previous section, we measured the average number of

I/Os needed to process a random query over 1,000 trials1. Figure 5.12 shows I/Os for computing

point queries in the 10-D and 20-D databases. Figure 5.13 shows the same for 4D subcube queries.

No caching of tid-lists was used between successive queries (i.e., cold-start in each query testing).

In both graphs, I/O was reduced as F increased from 1 to 4. This is because when instantiated

1Assuming 4K page sizes and 4 bytes per integer.

30

dimensions were in the same fragments, their aggregated tid-lists were much shorter for retrieval.

In Figure 5.13, the reduction was small relatively to the total I/O because there were 4 inquired

dimensions. Since inquired dimensions cover all tuples in the database, shell fragment sizes do not

affect the I/O cost much.

 400

 300

 200

 100
 4 3 2 1

I/O
 (

P
ag

e
A

cc
es

es
)

Shell Fragment Size

10-D
20-D

Figure 5.12: Average I/Os per point query over 1,000 trials. (10-D) T = 106, D = 10, C = 10, S =
0, I = 4, Q = 0; (20-D) T = 106, D = 20, C = 10, S = 1, I = 3, Q = 0.

I/O cost: shell-fragments vs. full materialized cubes: One may wonder how these I/O

numbers compare to the case when full materialization of the data cube is actually possible. In

general, a query has I instantiated dimensions and Q inquired dimensions. In terms of the fully

materialized cube, the query seeks rows in the cuboid of all the relevant dimensions (I +Q) with

certain values according to the instantiations. For example, the query {?, ?, c1, *, e3, *}

seeks rows in the ABCE cuboid with certain values for dimensions C and E. These rows are used to

compute all aggregates within dimensions A and B.

Because cuboid cells are stored on disk in some fixed order, they might be incompatible with

the query. For example, they might happen to be sorted according to the inquired dimensions

first. In the worst case, the entire cuboid of the relevant dimensions have to be retrieved. Further,

it is necessary to read (I + Q + 1) integers per row in the cuboid because we have to read the

31

 4300

 4200

 4100

 4000
 4 3 2 1

I/O
 (

P
ag

e
A

cc
es

es
)

Shell Fragment Size

10-D
20-D

Figure 5.13: Average I/Os per 4D subcube query over 1,000 trials. (10-D) T = 106, D = 10, C =
10, S = 0, I = 4, Q = 4; (20-D) T = 106, D = 20, C = 10, S = 1, I = 3, Q = 4.

dimensional values and measure value. One may argue that the dimensional values can be skipped

if there was an index on the cuboid cells. However, retrieval via an index implies random access

for each row, which turns out to be much more expensive than just a plain sequential access with

the dimensional values.

Figure 5.14 shows the average number of I/Os needed in a random query of various sizes over

1,000 trials. The number of inquired dimensions was 7 minus the number of instantiated dimensions.

No caching was used, and the full data cube on disk was sorted according to the dimensional order:

A, B, C, etc. Shell fragment size was set to 1. The relevant dimensions were the first 7 dimensions

of the database and their materialized cuboid contained 951,483 rows.

The curves show that the shell-fragment I/O is competitive with the materialized data cube in

many cases. Whenever the query had inquired dimensions before the instantiated dimensions in

terms of the sort order, the materialized cuboid on disk have to pay the price of scanning useless

cells. On average, these costs turn out be just as much as those in our method.

By having a shell-fragment size of 2 or more could lower I/O costs for our method. In addition,

in real world applications with caching of recent queries, the I/O costs for both methods would be

32

drastically reduced. Furthermore, had there been fewer relevant dimensions in the queries, the full

data cube would have achieved lower I/O numbers due to the smaller cuboid size.

 6000

 5000

 4000

 3000

 2000

 1000

 0
 6 5 4 3 2

I/O
 (

P
ag

e
A

cc
es

se
s)

Number of Instantiated Dimensions

Fragment-Based
Full Cube

Figure 5.14: Average I/Os per query over 1,000 trials. T = 106, D = 10, C = 10, S = 0, F =
1, Q = 7− I.

5.8 Full Data Cube Computation

For online queries, our method needs to compute a data cube from a low-dimensional base cuboid

assembled from the relevant set of dimensions. One may wonder which cubing algorithm should

be used in such computation. Our cubing algorithm using shell fragments is called Frag-Cubing.

It is interesting to compare the four competitive algorithms, MultiWay [24], BUC [7], Star-Cubing

[22], and Frag-Cubing. Our first experiment computes a full 3D cube. Figure 5.15 shows that

Frag-Cubing is comparable with BUC but is substantially slower than MultiWay and Star-Cubing.

Our second experiment computes a full cube of varying dimensionality, each dimension with the

cardinality of 25 and the database size fixed at 500k tuples. The performance results in Figure

5.16 show that as the number of dimensions increases, Frag-Cubing becomes slow and Star-Cubing

remains the fastest among the four algorithms. This suggests that if there are only 3 or less inquired

dimensions, one could simply use Frag-Cubing to compute the data cube online. However, if there

33

 0

 1

 2

 3

 4

 5

 6

 7

 250 500 750 1000 1250 1500

R
un

tim
e

(S
ec

on
ds

)

Number of Tuples (1000s)

Multi-Way
BUC

Star-Cubing
Frag-Cubing

Figure 5.15: Full cube computation time in relevance to the number of tuples

are 4 or more inquired dimensions, it is beneficial to switch to a more efficient cubing algorithm,

such as Star-Cubing, for fast online cube computation.

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5

R
un

tim
e

(S
ec

on
ds

)

Dimensionality

Multi-Way
BUC

Star-Cubing
Frag-Cubing

Figure 5.16: Full cube computation time in relevance to the number of dimensions

34

5.9 Experiments with Real-World Data Sets

Besides synthetic data, we also tested our algorithm on two real-world data sets. The first data

set was the Forest CoverType dataset obtained from the UCI machine learning repository website

(www.ics.uci.edu/∼mlearn). This dataset contains 581,012 data points with 54 attributes, includ-

ing 10 quantitative variables, 4 binary wilderness areas and 40 binary soil type variables. The

cardinalities are (1978, 361, 67, 551, 700, 5785, 207, 185, 255, 5827, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 7). We

constructed shell-fragments of size 2 using consecutive dimensions as groupings. The construction

took 33 seconds and 325MB.

With the shell fragments in memory, running a point query with 1-8 instantiated dimensions

took less than 10 milliseconds. This is not surprising because the number of tuples in the database

is moderate. More interesting are the subcube queries. Running a 3-D subcube query with 1

instantiated dimension ranged between 67 ms (millisecond) and 1.4 second. Running a 5-D subcube

query with 1 instantiated dimension ranged between 85 ms and 3.6 second. The running times

were extremely sensitive to the particular dimensions inquired in the query. The high-end numbers

reported were queries that included the dimension of cardinality 5827 in the inquired set. When

the cardinalities of the inquired dimensions are small, subcube queries are extremely fast.

The second data set was obtained from the Longitudinal Study of the Vocational Rehabilitation

Services Program (www.ed.gov/policy/speced/leg/rehab/eval-studies.html). It has 8818 transac-

tions with 24 dimensions. The cardinalities are (83, 9, 2, 7, 4, 3165, 470, 131, 1511, 409, 144, 53,

21, 14, 12, 13, 27, 21, 18, 140, 130, 50, 23, 505). We constructed shell-fragments of size 3 using

consecutive dimensions as the fragment groupings. The construction took 0.9 seconds and 60MB.

With the shell fragments in memory, running a point query on the dataset with 1-8 instantiated

dimensions either in different fragments or the same took basically no time. Running a 3-D subcube

query with no instantiations ranged between 50 ms and 1.6 second. A 3-D subcube query with

1 instantiated dimension took on average only 90 ms to compute. A 5-D subcube query with 0

instantiated dimensions ranged between 227ms and 2.6 second. We also tried a similar data set

from the same collection with 6600 tuples and 96 dimensions and obtained very similar results.

35

Chapter 6

Discussion

In this section, we discuss related work and further implementation considerations.

6.1 Related Work

There are several threads of work related to our model. First, partial materialization of data

cubes has been studied previously, such as [12]. Viewing the data cube as a lattice of cuboids,

some cuboids can be computed from others. Thus to save storage space, only the cuboids which

are deemed most beneficial are materialized and the rest are computed online when needed. In

this spirit, our approach may seem similar to theirs; however, the two models of computation are

very different. In our approach, low dimensional cuboids facilitate the online construction of high

dimensional cuboids via tid-lists. In [12], it is in the opposite direction: high dimensional cuboids

facilitate the online construction of low dimensional cuboids by further aggregation.

Our work utilizes the construct of an inverted index as termed in information retrieval and value-

list index as termed in databases. A large body of work has been devoted to this area. Inverted

index has been widely used in information retrieval and Web-based information systems [4, 20].

Similar structures have been proposed and used in bitmap index of data cubes [9] and vertical

format association mining [23]. Bitmaps and other compression techniques have been studied to

optimize space and time usage [3, 8, 21]. In [15], projection indices and summary tables are used

in OLAP query evaluations. However, all of these works have only focused on single dimensional

indexing with or without aggregation. Our model studies the construction of multi-dimensional data

36

structures (i.e., 2-D, 3-D fragments) and the corresponding measure aggregation. Such structures

and pre-computations not only reduce I/O costs but also speed up online computation over the

single dimensional counterparts.

In [6], the authors investigated the usage of low dimensional data structures for indexing a high

dimensional space. Their method, tree-striping, also partitions a high dimensional space into a

set of disjoint low dimensional spaces. However, their data structures and algorithms were only

designed to index data points, lacking the aggregations and other elements needed for data cubing.

One interesting observation made in [6] is that in trying to optimize the tradeoffs between pre-

calculated result access and online computation, partitioning the original space into sets of 2 or 3

dimensions was often better than partitioning into single dimensions. Our studies from the point

of view of data cubing derives a similar conclusion as they did for indexing: shell-fragment sizes

between 2 and 4 achieve a good balance between storage size and online computation time.

6.2 Further Implementation Considerations

6.2.1 Incremental Update

The shell fragments and ID measure array are quite adaptable to incremental updates. When a new

tuple is inserted, a new 〈tid : measure〉 pair is added into the ID measure array. Moreover, this new

tuple is vertically partitioned according to the existing fragments and added to the corresponding

inverted indices in the fragment cubes. Incremental deletion can be performed similarly with the

reverse process.

Another interesting observation is that one can incrementally add new dimensions to the existing

data. This is difficult for normal data cubes. However, it is easy to handle in our approach. The

new dimensions (Di, . . . , Dj) together with the new data form new inverted lists, still in the form

of 〈dimension value : tidlist〉. These new dimensions can either form new fragments or be merged

with the existing ones. Similarly, existing dimensions can be deleted by removing them from their

respective fragments.

37

6.2.2 Fragment Grouping

In our examples, we choose equal-sized grouping of consecutive dimensions in fragment partition-

ing. However, there is nothing that excludes us from using domain-specific knowledge for better

grouping. For example, suppose in a 60-dimensional data set, dimensions {A5, A9, A32, A55,

A56} often appear together in online queries, we can group them into two fragments, such as

(A5, A9, A32) and (A55, A56), or even one 5-D segment, depending on the historical or expected fre-

quent queries. Furthermore, the groupings need not to be disjoint. We could have two fragments,

such as (A5, A9, A32) and (A9, A55, A56). This added redundancy may offer speed-ups in query

processing. With the known (or expected) query distribution and/or constraints on dimension set,

intelligent grouping can be performed to facilitate the retrieval and manipulation of relevant set of

dimensions within a small number of fragments.

6.2.3 Queries with Automated Tools

One may wonder whether the shell-fragment method designed for interactive OLAP queries may

benefit the analysis using automated OLAP tools. Analysis using an automated tool is equivalent

to one or more “OLAP queries”, each analyzing a subset of dimensions of a cube by viewing it

as a pre-computed subcube. Since each such OLAP query can be implemented efficiently using

our method, analysis with automated tools can benefit from this method as well, especially in

high-dimensional data analysis.

6.2.4 Bitmap Indexing

Throughout the paper, we have discussed I/O and computation costs with the assumption that

the tid-lists are stored on disk as an array of integers. However, in data sets where cardinalities

of the dimensions are small, bitmap indexing [3, 8, 15, 21] can improve space usage and speed.

For example, if a column only has 2 possible values: male or female, the savings in storage space

is high. Furthermore, the intersection operation can be performed much faster using the bit-AND

operation than the standard merge-intersect operation.

38

6.2.5 Inverted Index Compression

Another compression method of the tid-lists come from information retrieval [4, 20]. The main

observation is that the numbers in the tid-list are stored in ascending order. Thus, it would be

possible to store a list of d-gaps instead of the actual numbers. In general, for a list of numbers

〈d1, d2, . . . , dk〉, the d-gap list would be 〈d1, d2 − d1, . . . , dk − dk−1〉. For example, suppose we have

the list 〈7, 10, 19, 22, 45〉. The d-gaps list would be 〈7, 3, 9, 3, 23〉. The insight is that the largest

number in the d-gap list is bounded by the difference between d1 and dk. Thus, it maybe possible

to store them using less than the standard 32 bits of an integer. If many of the gap integers are

small, the compression could be substantial. The details of compression have been exploited in

information retrieval. Some of the popular techniques are unary, binary, δ, γ, and Bernoulli [20].

39

Chapter 7

Conclusions

We have proposed a novel approach for OLAP in high-dimensional datasets with a moderate num-

ber of tuples. It partitions the high dimensional space into a set of disjoint low dimensional spaces

(i.e., shell fragments). Using inverted indices and pre-aggregated results, OLAP queries are com-

puted online by dynamically constructing cuboids from the fragment data cubes. With this design,

for high-dimensional OLAPing, the total space that needs to store such shell-fragments is negligible

in comparison with a high-dimensional cube, so is the online computation overhead. In our exper-

iments, we showed that the storage cost grows linearly with the number dimensions. Moreover,

the query I/O costs for large data sets are reasonable and are comparable with reading answers

from a materialized data cube, when such a cube is available. And we also showed evidence of how

different shell fragment sizes can affect query processing.

We have been performing further refinements of the proposed approach and exploring many

potential applications. Traditional data warehouses have difficulties at supporting fast OLAP in

high dimensional data sets, including spatial, temporal, multimedia, and text data. A systematic

study of the applications of this new approach to such data could be a promising direction for

future research.

40

References

[1] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and

S. Sarawagi. On the computation of multidimensional aggregates. In Proc. 1996 Int. Conf.

Very Large Data Bases (VLDB’96), pages 506–521, Bombay, India, Sept. 1996.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. 1994 Int.

Conf. Very Large Data Bases (VLDB’94), pages 487–499, Santiago, Chile, Sept. 1994.

[3] S. Amer-Yahia and T. Johnson. Optimizing queries on compressed bitmaps. In Proc. 2000

Int. Conf. Very Large Data Bases (VLDB’00), pages 329–338, Cairo, Egypt, Sept. 2000.

[4] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.

[5] D. Barbara and M. Sullivan. Quasi-cubes: Exploiting approximation in multidimensional

databases. SIGMOD Record, 26:12–17, 1997.

[6] S. Berchtold, C. Böhm, D. A. Keim, Hans-Peter Kriegel, and Xiaowei Xu. Optimal multidi-

mensional query processing using tree striping. In Proc. 2nd Int. Conf. on Data Warehousing

and Knowledge Discovery (DaWaK’00), London, UK, Sept. 2000.

[7] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. In

Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pages 359–370,

Philadelphia, PA, June 1999.

[8] C. Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation. In Proc. 1998 ACM-

SIGMOD Int. Conf. Management of Data (SIGMOD’98), pages 355–366, Seattle, WA, June

1998.

41

[9] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. SIGMOD

Record, 26:65–74, 1997.

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and

H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab

and sub-totals. Data Mining and Knowledge Discovery, 1:29–54, 1997.

[11] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes with complex

measures. In Proc. 2001 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’01), pages

1–12, Santa Barbara, CA, May 2001.

[12] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In

Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’96), pages 205–216,

Montreal, Canada, June 1996.

[13] L. V. S. Lakshmanan, J. Pei, and J. Han. Quotient cube: How to summarize the semantics of

a data cube. In Proc. 2002 Int. Conf. on Very Large Data Bases (VLDB’02), pages 778–789,

Hong Kong, China, Aug. 2002.

[14] L. V.S. Lakshmanan, J. Pei, and Y. Zhao. Qc-trees: An efficient summary structure for

semantic olap. In Proc. 2003 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’03),

San Diego, CA, June 2003.

[15] P. O’Neil and Dallan Quass. Improved query performance with variant indexes. In Proc. 1997

ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’97), Tucson, AZ, June 1997.

[16] J. Shanmugasundaram, U. M. Fayyad, and P. S. Bradley. Compressed data cubes for OLAP

aggregate query approximation on continuous dimensions. In Proc. 1999 Int. Conf. Knowledge

Discovery and Data Mining (KDD’99), pages 223–232, San Diego, CA, Aug. 1999.

[17] Y. Sismanis and N. Roussopoulos. The dwarf data cube eliminates the high dimensionality

curse. Technical Report 4552, University of Maryland, 2003.

42

[18] Y. Sismanis, N. Roussopoulos, A. Deligianannakis, and Y. Kotidis. Dwarf: Shrinking the

petacube. In Proc. 2002 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’02),

pages 464–475, Madison, Wisconsin, June 2002.

[19] W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed cube: An effective approach to reducing

data cube size. In Proc. 2002 Int. Conf. Data Engineering (ICDE’02), San Fransisco, CA,

April 2002.

[20] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann, 1999.

[21] M. C. Wu and A. P. Buchmann. Encoded bitmap indexing for data warehouses. In Proc. 1998

Int. Conf. Data Engineering (ICDE’98), pages 220–230, Orlando, FL, Feb. 1998.

[22] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing iceberg cubes by top-down and

bottom-up integration. In Proc. 2003 Int. Conf. Very Large Data Bases (VLDB’03), Berlin,

Germany, Sept. 2003.

[23] M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm for closed itemset mining. In Proc.

2002 SIAM Int. Conf. Data Mining (SDM’02), pages 457–473, Arlington, VA, April 2002.

[24] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous

multidimensional aggregates. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data

(SIGMOD’97), pages 159–170, Tucson, Arizona, May 1997.

43

