
c© 2008 Xiaolei Li

MULTIDIMENSIONAL ANALYSIS OF MOVING OBJECT DATA

BY

XIAOLEI LI

B.S., University of Illinois at Urbana-Champaign, 2002
M.S., University of Illinois at Urbana-Champaign, 2004

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Professor Jiawei Han, Chair
Professor Marianne Winslett
Assistant Professor ChengXiang Zhai
Professor Walid G. Aref, Purdue University

Abstract

The collection of historical or real-time data on moving objects is quickly becoming a ubiq-

uitous task. With the help of GPS devices, RFID sensors, RADAR, satellites, and other

technologies, mobile objects of all sizes, whether it be a tiny cellphone or a giant ocean liner,

can be easily tracked around the globe. Many fundamental problems in the database field

have found their parallels in the moving object domain. They include indexing and query

processing of moving objects over static or continuous queries and similarity search between

moving objects. The same has happened with data mining problems as well. Clustering of

moving objects is one popular topic; spatial association patterns is another.

However, even with the recent attention, there are still many unexplored areas in moving

objects research. Specifically, higher semantic level problems remain mostly untouched. One

example is anomaly detection. With the ever-increasing focus on video surveillance, many

cities are tracking and analyzing vehicles as they move throughout the city. With the ultimate

goal of automated reporting and alerting, sophisticated algorithms are needed to evaluate the

moving object trajectories. Furthermore, associations with other multi-dimensional features

will need to be considered as well. Another example is periodic traffic pattern detection.

Everyone is familiar with rush hour traffic in big cities, but extracting and representing them

in an efficient and concise manner has not been addressed.

To this end, we present our studies in this thesis. With regards to anomaly detection, we

present three models to automatically detect moving object anomaly, traffic anomaly, and

subspace anomaly. The last of which detects anomalies in a multidimensional space, which

ii

is often the case in real world datasets. Additionally, we also address problems that could

occur due to sampling in a multidimensional space and how to summarize moving object

trajectories for more efficient processing.

iii

Table of Contents

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1

Chapter 2 Related Work . 6
2.1 Indexing and Query Processing . 6

2.1.1 Stationary Spatial Data . 7
2.1.2 Moving Object Data . 8

2.2 Data Mining . 10
2.3 Clustering . 12

Chapter 3 Hot Route Detection . 14
3.1 Solution Overview . 16
3.2 Traffic Behavior in Road Networks . 18

3.2.1 Traffic Complexity . 18
3.2.2 Splitting/Joining Hot Routes . 18
3.2.3 Overlapping Hot Routes . 19
3.2.4 Slack within Hot Routes . 20

3.3 Density-based Hot Route Extraction . 21
3.3.1 Traffic-Density Reachability . 21
3.3.2 Discovering Hot Routes . 24
3.3.3 Algorithm . 25
3.3.4 Determining Parameters . 29

3.4 Experiments . 30
3.4.1 Data Generation . 30
3.4.2 Extraction Quality . 31
3.4.3 Efficiency . 34

Chapter 4 Sampling in Multidimensional Data 37
4.1 Definitions . 40

4.1.1 Data Cube Definitions . 40

iv

4.1.2 Problem Definition . 42
4.1.3 Confidence Interval . 42

4.2 The Sampling Cube Framework . 43
4.2.1 Materializing the Sampling Cube . 43
4.2.2 Boosting Confidence for Small Samples 44

4.3 The Sampling Cube Shell . 51
4.3.1 Building the Sampling Cube Shell . 52
4.3.2 Query Processing . 56

4.4 Performance Evaluations . 59
4.4.1 Shell Construction Efficiency . 60
4.4.2 Query Effectiveness . 61

Chapter 5 Moving Object Outliers . 68
5.1 Key Insights . 70

5.1.1 Motif-based Feature Space . 70
5.1.2 Multi-Resolution Feature Hierarchies 72

5.2 Framework . 72
5.2.1 Motif Extractor . 73
5.2.2 Feature Generator . 75
5.2.3 Classification . 80

5.3 Experiments . 83
5.3.1 Real Data . 84
5.3.2 Synthetic Data . 86

Chapter 6 Subspace Outliers in Multidimensional Data 93
6.1 Problem Definition . 94

6.1.1 Preliminaries . 94
6.1.2 The Anomaly Search Problem . 96
6.1.3 Ranking Anomalies in Data Cube . 97

6.2 Mining Top-K Anomalies in Data Cubes . 98
6.2.1 Retrieving σp(R) . 99
6.2.2 Selecting Candidate Subspaces . 100
6.2.3 Discovering Top-K Anomaly Cells . 104
6.2.4 Iterative Search . 104

6.3 Experiments . 105
6.3.1 Real World Data . 105
6.3.2 Synthetic Data . 108

Chapter 7 Temporal Traffic Outliers . 110
7.1 Road Segment Representation . 112

7.1.1 Input Data . 112
7.1.2 Feature Space . 113

7.2 Temporal Outlier Detection . 114

v

7.2.1 Temporal Neighborhood Vector . 116
7.2.2 Temporal Vector Update Rules . 118
7.2.3 Temporal Outlier Scoring . 121

7.3 The TOD Framework . 122
7.3.1 Complexity . 123
7.3.2 Setting Parameters . 123
7.3.3 Other Applications . 124

7.4 Experiments . 126
7.4.1 Outliers . 126
7.4.2 Näıve Outlier Detection . 128
7.4.3 Efficiency . 129

Chapter 8 Conclusion . 132

References . 135

Author’s Biography . 143

vi

List of Tables

4.1 Two models of OLAP application . 38
4.2 Sample survey data . 39
4.3 Query expansion experimental results . 67

6.1 Input market segment data . 95
6.2 Time Anomaly Matrix . 101
6.3 Attribute value AL scores . 103
6.4 Run times of trend anomaly query with low dimensional data (10 ≤ |R| ≤ 11) 106
6.5 Magnitude anomaly query run times . 106

7.1 Sample Feature Space . 114
7.2 Edge Similarity Values for Day 1 . 117
7.3 Day 1–3 Temporal Neighborhood Vectors . 120
7.4 Outlier Scores . 122

vii

List of Figures

1.1 Thesis Framework . 4

3.1 Snapshot of San Francisco Bay Area traffic 15
3.2 Spectrum view of FlowScan and alternative methods 17
3.3 Splitting hot routes: A→ B → C and A→ B → D 19
3.4 Overlapping hot routes: A→ B and B → C 20
3.5 Slack within a hot route: A→ B . 20
3.6 1-neighborhood of r. 22
3.7 Two sides of the same street . 22
3.8 Route traffic density-reachable . 24
3.9 Indexing structures of FlowScan . 28
3.10 Hot routes in San Francisco data map . 31
3.11 Hot routes in San Joaquin data map . 32
3.12 Splitting hot routes . 34
3.13 Overlapping hot routes . 35
3.14 Efficiency with respect to number of objects 35
3.15 Disk I/O improvement of clustered index on Edge Table 36

4.1 Cuboid lattice . 41
4.2 Query expansion within sampling cube . 46
4.3 Sampling Cube Shell . 52
4.4 Sampling cube shell construction example 57
4.5 (Age, Occupation) query . 59
4.6 Materialization time vs. dimensionality . 61
4.7 Materialization time vs. number of tuples . 61
4.8 Query accuracy vs. shell size for average household income dataset 64
4.9 Query accuracy vs. query dimensionality for average household income dataset 65

5.1 Motif representation . 71
5.2 ROAM Framework . 73
5.3 Two objects moving with the same trajectory. 75
5.4 Two sample motif-attribute hierarchies . 79
5.5 Path of ship Point Sur from 16:00 to 24:00 on 8/23/00 starting at point (0, 0). 84

viii

5.6 Extracted motifs from MBARI data. 85
5.7 Effect of ω on classification accuracy. 85
5.8 Effect of number of motifs on classification accuracy. 86
5.9 GSTD N2000B200M30: Accuracy with respect to difference in variance. . . 87
5.10 N4kB200A3S5.0L20: Accuracy with respect to number of motifs. 88
5.11 N4kB200A3S5.0L20: Accuracy with respect to length of motif-trajectories. . 89
5.12 N5kB100M20A3L20: Accuracy with respect to standard deviation. 89
5.13 N500B100M20A3S25L20: Accuracy with respect to β. 90
5.14 N15kB500A3S25L20: Accuracy with respect to number of motifs. 90
5.15 GSTD: B200M20: Efficiency with respect to number of trajectories. 91
5.16 N20000B1000M20A3S10.0: Efficiency with respect to length of motif-trajectories. 91
5.17 GSTD: N2000B100M10: Efficiency with respect to length of trajectories. . . 91

6.1 Cuboid lattice . 95
6.2 SUITS Framework . 99
6.3 Running time vs. number of dimensions . 107
6.4 Running time vs. number of tuples . 108
6.5 Running time vs. number of dimensions . 109
6.6 Running time vs. length of time series . 109

7.1 Historical Speed on Road Segment X . 111
7.2 Historical Speed on Many Road Segments 111
7.3 Stability of Average Daily Speed and Load 114
7.4 Speed and Load Neighborhood Stability . 116
7.5 Similarity-based Reward/Penalty to vi,j . 119
7.6 TOD Data Flow . 123
7.7 Temporal Similarity . 125
7.8 Speed Outlier (14th St.) . 127
7.9 Speed Outlier (Webster Ave.) . 127
7.10 Load Outlier . 127
7.11 Load Outlier . 128
7.12 Non-Outlier . 128
7.13 Average Speeds of I-880 . 130
7.14 Average Speeds of San Jose Ave. 131
7.15 Efficiency vs. Number of Days . 131
7.16 Efficiency vs. Neighborhood Radius . 131

8.1 Thesis Framework & Future Direction . 133

ix

Chapter 1

Introduction

In recent years, analysis of moving object data [24] has emerged as a hot topic both academ-

ically and practically. On a macro level, trajectories of airplanes or ships are being tracked

constantly by either the company who runs them or the government. On a micro level, GPS

devices embedded in vehicles or RFID sensors on the streets can track a vehicle as it moves

throughout the city traffic grid. GPS devices in cellphones can even track an individual

person as he/she walks around the city. There are many useful applications with such data.

For instance, the OnStar system in General Motors vehicles notifies police of the vehicle’s

GPS location when a crash is detected. Google Ride Finder provides real-time location of

taxi cabs in many major cities through GPS devices installed in the cars. E-ZPass sensors

(using RFID technology) automatically pay tolls so traffic is not disturbed. GPS navigation

systems offer driving directions in real-time. Several cellphone services provide GPS tracking

of children for parents or just tracking of nearby friends. On a more aggregate level, average

speeds or traffic density is used to update driving time estimates in real-time or warn police

of potential problem areas.

With such data and immediate applications, there are many exciting opportunities in

research. Some basic ones include index and query. They are very important and funda-

mental questions to tackle. But in addition to the basic real-world applications of simply

asking “Where is this object?” or “Where has this object been?”, there are many higher level

questions one could ask for moving objects data. Example 1 shows one particular problem

which is of great interest in homeland security and surveillance.

1

Example 1 At any one time, there are approximately 160,000 vessels traveling in the United

States’ waters. They include military cruisers, private yachts, commercial liners, and so on.

The US Navy and Coast Guard are constantly on the lookout for suspicious behaviors. The

traditional model of surveillance has been manual inspection of RADAR. However, as the

number of vessels increases and the cost of manpower increases, it is becoming unrealistic to

manually examine each of these vessels and identify the suspicious ones. Thus, it is highly

desirable to create automated tools that can evaluate the behavior of all maritime vessels and

develop situational awareness on the abnormal ones.

Example 1 shows an example of anomaly detection in the military. More close to home

are surveillance applications. Recently in Chicago, millions of dollars have been invested to

install hundreds of cameras at street corners. Though they are being used to many different

purposes, one is to track the movement of vehicles. By reading the license plate number, the

cameras can track a vehicle as it moves throughout the city. This tracking can be used for

criminal investigations and also anti-terrorism purposes. One simple example the city gave

was that if a vehicle is observed at a particularly sensitive street corners three times within a

short period of time, the system would automatically raise an alarm. This is a rather simple

rule; one could imagine a much more sophisticated system at work.

On a less security-focused front, imagine the following application of moving object tech-

nology.

Example 2 Many modern-day cellphones are equipped with GPS technology that can pin-

point the user anywhere on Earth. Even without GPS, one could use triangulation of the

cellphone towers to narrow down the location of the user to within a few city blocks. This

effectively says that all cellphone users’ locations can be tracked. For the purpose of studying

and predicting consumer behavior, this is a great source of data. By knowing the location

of people in various stores and malls across the city, one can very accurately measure and

predict the sales of goods at all types of stores.

2

The above example shows the great power of tracking moving objects. If one can predict

the sales of goods at a chain of stores, one can fairly accurately predict the quarterly sales

number of the company. This leads to better prediction of stock prices and much better

“playing” of the stock market than conventional analysts.

Similarly, but on a much more micro level, one can imagine tracking customers inside a

single store. RFID technology can be installed on shopping carts and baskets and be used

to track customers as they wander the store. Such trajectories can be used to better model

consumer behavior and possibly better store layouts to maximize revenue.

The above two examples give relatively high level problems in the moving object domain.

Problems of this type are the focus of this thesis. Instead of asking basic questions such as

“Where is object X?”, we ask higher level and more aggregated questions such as “What

are the behaviors of objects of type X?” In the context of previous examples, type X could

be “suspicious vehicles” or “potential buyers.” The much more loaded term in that question

is “behaviors.” Behavior can be defined in an infinite number of ways. In the context of

spatiotemporal data, it could be a movement pattern in space (e.g., right turn), an attribute

of movement (e.g., speed), or an attribute in time (e.g., 10:00am). Such behaviors or patterns

are easy to describe in human terms but to have an algorithm extract them automatically is

another question. Furthermore, implied in our question is the term “interesting” in front of

“behaviors.” Since the goal is to learn more about objects of type X, uninteresting behaviors

are fairly useless. For examples, knowing that many vehicles drive on the highway is common

knowledge and does not add much to the study. But to define interestingness is a tricky

issue. Is it something that is frequent? Does it have to be unique to type X? Depending on

the application, different interestingness measures can be employed.

In this thesis, we are looking for patterns in moving object trajectories for the purpose

of extracting high level knowledge. To this end, we present several studies that fit into an

overall framework. Figure 1.1 shows the flow of data in the framework. At the top is the

3

original raw moving object data. The middle level serves as a pre-processing step which may

clean the data in some form. The bottom layer is the analysis layer which then extracts the

final patterns.

Moving
Object
Data

Sampled
TrajectoriesTrajectories

Trajectory
Patterns

Subspace
Outliers

Moving
Object
Outliers

Traffic
Outliers

Figure 1.1: Thesis Framework

The rest of this thesis will describe the modules in Figure 1.1 in detail. First, to allow all

our analysis studies to operate on a higher semantic level, Chapter 3 studies the extraction

of hot routes in traffic data [51]. This step lets algorithms operate on a more aggregated in-

formation rather than individual road segments or trajectory pieces. Next, in many studies,

only a sample of the population is available for study. How to deal with the lack of data

in a multidimensional space [52] is addressed in Chapter 4. The next three chapters corre-

spond to the three outlier detection modules in Figure 1.1. Moving from left to right, we

first present ROAM [50], which detects moving object outliers in a free-moving environment

and will be discussed in Chapter 5. Next, we consider outliers in arbitrary subspaces of a

multidimensional space. Analysis of moving object data is often multidimensional. That is,

4

there are multiple dimensions of attributes attached to the data and one can analyze them

from arbitrary angles. This introduces outliers in multidimensional space [47], which is the

subject of our study in Chapter 6. Lastly, we present TOD [53], which detects temporal

outliers in the traffic of a road network and will be discussed in detail in Chapter 7. We

conclude our studies and discuss some future work in Chapter 8.

5

Chapter 2

Related Work

Compared to other more mature fields, research with moving objects is still in its infancy.

Much of the work is still focused on relatively fundamental, yet very important, questions

such as indexing and query processing. In this section, we will review the current research

in all related areas and also how they relate to our own planned work. For completeness, we

will include work from the field of spatiotemporal research. Because it considers all spatial

objects (not just moving ones), it can be viewed as a superset of moving objects research.

2.1 Indexing and Query Processing

A basic task people like to perform on data is indexing. Given a large amount of data,

the most basic question to ask is “What is in it?” For spatiotemporal data, it is more like

“Where is it?” or “Where was it at this particular time?” Questions such as these can only

be answered efficiently if there is a proper index on the data.

In discussing various types of indices and query processing, we are going to divide them

into two main groups. The first are stationary objects (either having size or not) and the

second are moving objects. While stationary objects may seem unrelated to our work, many

of the techniques in that field are quite useful. Further, because our work involves spatiotem-

poral data in general, it will often require analysis on stationary spatial objects. Thus, we

will discuss both types of data in the following two sections.

6

2.1.1 Stationary Spatial Data

The R-tree index [25] was invented for the purpose of accessing points in multi-dimensional

space. Though it can handle all types of spatial data whether the points have size or not.

Based on the B-tree, it uses the concept of minimum bounding rectangles. Each non-leaf

node in the tree is a bounding rectangle that spatially contains all nodes (i.e., objects) in its

subtree. To search for an object, one would start at the root node (the bounding rectangle

that contains all objects) and progressively drill down to smaller rectangles until the query

is satisfied.

Many extensions of the original R-tree have been proposed; some can handle moving

objects as well. They include the R*-tree [6], R+-tree [70], X-tree [8], Hilbert R-tree [34], CR-

tree [37], CT-R-tree [16], CR*-tree, Hilbert CR-tree, and more. A performance comparison

can be found at [29].

In relation to our work of data mining in moving objects, such indexing algorithms can be

very helpful. In some of our work [51], spatial queries are needed to find stationary objects

(namely street intersections) near a particular location. Having a faster index would only

make our algorithm more efficient.

In additional to basic window queries, algorithms [67, 72, 15] have also been proposed

to efficiently process nearest-neighbor queries. These are well-known problems in traditional

database research that has been ported to spatiotemporal research. But, the nature of

spatiotemporal data has also introduced a new kind of query, one where the query (be it a

region or a point) moves. A natural real-world application is to find the nearest restaurant

as one moves through a city.

A näıve approach to this problem is to continuously apply the traditional stationary algo-

rithms repeatedly as the query moves. This would surely work but could be very inefficient.

For instance, if the query moves very little, the results might not change at all. By knowing

this, one could save an entire query.

7

Several algorithms [76, 91] have been proposed to tackle this problem. In one of the

earlier work [76], it was proposed to process the query by issuing the entire query segment

(i.e., the object’s trajectory) to an R-tree instead of point-by-point. This reduces many

redundant queries. The authors also introduce heuristics for pruning parts of the R-tree by

calculating distances between nodes and the query segment. In [91], the concept of a valid

region for the query location is introduced. As long as the query object remains in the valid

region, there is no need to re-evaluate the query (either nearest-neighbor or window). By

being aware, this greatly reduces the number of evaluations on the query.

And finally, related to index and query is data warehousing [59, 62, 46, 74, 75]. In-

stead of focusing on individual object’s locations, queries seek aggregate information on

historical data. Other studies have focused on approximate aggregate queries [73]. In it,

multi-dimensional histograms are used to approximate the aggregation queries.

2.1.2 Moving Object Data

The previous section discussed indexing structures and queries for spatial objects that did

not move. The more relevant scenario to our work is when do they move. One of the first

work to touch on this topic was the TPR-tree [69], which is a time-parametrized R-tree. Like

the R-tree, non-leaf nodes in the tree are bounding rectangles that contain all points in the

subtree. But additionally, each rectangle also has a velocity vector. Then, depending on the

setting of the time parameter, one could calculate the new position of the rectangle for some

time in the future. By doing the same calculation for a possibly moving query rectangle, one

can then check if the query rectangle and any object rectangle will intersect at any time.

This framework has been extended [77, 68] and used [7, 17, 64, 43].

A different class of solutions for the same problem uses the idea of dual spaces. Trajec-

tories are converted into points in a different space and indexed and queried accordingly.

Some examples of this idea include algorithms which convert trajectories to points in higher

8

dimensional spaces [39, 1, 61, 40]. One particular example is STRIPES [61]. Instead of using

the R-tree and modeling linear trajectories, entire trajectories are transformed to points in

a higher dimensional space. Specifically, given a moving object in d-dimensional space, the

maximum velocity vector (d-dimensional vector) combined with reference position vector

(d-dimensional vector) forms a new 2d-dimensional point. These points are then stored in a

multi-dimensional quadtree. And finally, there is work that transforms trajectories to points

in a lower dimensional space. The Bx-tree [32, 55] and Bdual-tree [86] are examples in which

the moving objects are converted to 1-dimensional values using space-filling curves and then

stored in a B+-tree.

With continuously moving objects, many traditional queries can be converted to “con-

tinuous” as well. More specifically, instead of just executing the query once and getting the

results, the query executes continuously and the results are updated as the objects moves.

First, consider the case where the movements of the objects are known a priori. Nearest

neighbor queries on them have been studied in [30, 31, 66]. In general, one might not know

any information before evaluating the query. Some studies [32, 57, 58, 89, 83] basically re-

evaluate the query periodically using the new moved data. A recent work [28] also works

on this problem without making any assumptions. It extends the idea of valid regions [91]

to both the query and the objects themselves. One of the goals of the framework is reduce

the amount of communication between objects (both the querying object and the queried

objects) and the central database, which keeps track of queries and moving objects. In this

framework, each moving object is aware of a safe region. As long as the object moves inside

this region, it will not affect the result of the queries that the central database is currently

handling. But, if the object moves outside the region, it will update the central server of

its new location and the central database will take care of updating query results and also

new safe regions. By doing this, not only is the number of query calculations reduced, the

amount of communication between the object and the central database is also reduced.

9

One particular type of moving object data that is of interest to us is moving objects on

road networks or constrained networks. New techniques [63, 20, 4, 13] are needed to take

advantage of the constraints. In [63], a dimensionality reduction technique is used to reduce

the 3D problem (i.e., 2D spatial plus time) into lower-dimensional problems. The FNR-tree

[20] also uses a dimensionality reduction technique. A 2D R-tree is used to index all the

edges in the road network. Then, the objects within each object are further indexed by a

different 1D R-tree. In other words, there is a main 2D R-tree for indexing the network’s

edges and many different 1D R-trees in the leaves of the main tree for indexing objects.

Experimental results show that this indexing scheme is more efficient in terms of space

utilization and search speed than a 3D R-tree. More recently, the idea of an adaptive unit

(AU) was introduced in [13]. A single AU is similar to a MBR in the context of the TPR-tree

[69]. However, in the traditional TPR-tree, objects with very different movement patterns

may exist in a single MBR. If they happen to move in opposite directions, it will expand the

MBR very quickly and require many updates. In contrast, an AU will contain only objects

with similar movement patterns; it can be viewed as a moving object cluster. The AUs are

then indexed by an R-tree, similar to the original TPR-tree. The authors show empirically

that the AU-index is much more efficient with respect to updates than the TPR-tree.

2.2 Data Mining

Data mining in the spatiotemporal domain has also received some attention. One of the most

immediate extensions from traditional data mining is the discover of frequent patterns. One

of such studies finds frequent sequences in spatiotemporal data [79]. In their setting, data

consists of sequences of events at spatial locations. For example, locations could be cities in

the United States, and the sequential data could be temperature recordings. The goal is then

to find frequent sequential patterns in the data. The authors tackle this problem in a two-

10

step process. First, a depth-first mining algorithm is proposed to discover sequential patterns

at individual locations. The algorithm uses the enumeration lattice structure proposed in

SPADE to efficiently discover maximal frequent sequences. Then, to incorporate the spatial

aspect of the data, the algorithm examines the hierarchical nature of the locations. In the

United States for example, one could roll the locations up to the county or state level. This

hierarchy information is pushed down to the mining algorithm and an apriori-like property

is found to aid in the pruning of the algorithm.

Another popular problem with spatiotemporal data is co-location mining. This is very

similar to the traditional association mining. The biggest difference is that the predicates

in the pattern can be spatial or temporal or both. For example, in traditional association

mining, itemset A might be found to be frequently associated with B in the transaction

database. In co-location mining, the constraint of A being near B (where A and B are spa-

tiotemporal events) could be enforced. This neighborhood constraint add to the complexities

of the traditional mining algorithm. Some studies [41, 71, 88] have modified traditional asso-

ciation mining algorithms to incorporate the spatiotemporal information. For instance, the

apriori algorithm has been extended [71, 88] to join smaller co-location patterns together.

[88] performs a more complicated process by looking additionally at partial joins. [93] is a

recent work that quickly finds co-location patterns by using multiway joins.

A problem related to nearest-neighbor queries is the computation of influential sites

[81, 19]. The influence of a particular site is measured by how many other sites has it as its

nearest neighbor. This has also been called the reverse nearest-neighbor problem. Though

the concept of the problem is not unique to spatial data, the solution uses spatial solutions

such as the R-tree. Related to influential queries are preference queries [87]. A preference

query is like a regular query except that it considers extra features to the data. For instance,

a query asking for a ranked list of houses in a neighborhood might uses a combinations of

features (i.e., size, price, school quality, etc) in its ranking. This combination of spatial

11

information and other multi-dimensional features pose new challenges.

2.3 Clustering

Clustering of moving objects and trajectories is a useful problem in many contexts. Though

very similar in goal, these two problems have a subtle difference. In moving object clustering,

it is implied that the objects within a single cluster move with the same or similar trajectory

together. That is, they travel in a tight group. In trajectory clustering, only the final

resultant trajectory is considered. One could say that the temporal component is ignored.

Objects can move in arbitrary speeds or times, but as long as their final trajectories are

similar, they will be clustered together. Some examples of moving object clustering include

[36, 21, 11, 33]. In [33], objects are grouped using a traditional clustering algorithm at each

time snapshot and then linked together over time to form moving clusters. The assumption

is that clusters will be stable across short time periods.

Trajectory clustering has also produced some interesting results [90, 12, 44]. In one such

work [12], trajectories are converted to line segments and a similarity function is defined

between line segments. This similarity function is then used to mine for sequences of line

segments, which grows to the eventual pattern. A similar idea is employed in another work

[44]. Though the goal in that work is slightly different: trajectory clustering vs. pattern

discovering, the end result is quite similar. One could view the clusters as being the patterns.

In [44], a minimum description length approach is taken to describe a trajectory as a sequence

of lines. The lines are then fed into a density-based clustering algorithm to produce the final

clusters. The similarity function used in clustering is like the one in [12] where the difference

in angle and length factor into the final measure. Similarity functions between line segments

or whole trajectories have also been explored in traditional similarity search [80, 14]. More

recently, another work [22] attempted to solve the problem of discovering trajectory patterns.

12

In contrast to previous work, this one is more focused on higher level concepts. For instance,

instead of discovering a pattern involving a specific spatial location, a general location (e.g.,

airport) is found. Such general locations are called Regions-of-Interest or RoI’s. Then,

frequent movement patterns between the RoI’s are discovered.

Finally, there is the area of trajectory modeling [54, 42]. Here, the goal is very different.

Instead of just producing frequent patterns, an entire model is constructed that describes

how the object will move under various situations. A Markov model is typically used for

such problems. Also, each model is typically used to describe just a single object. Multiple

objects with slightly varying transition probabilities can not be efficiently captured within

a single model. This makes it unsuitable for hundreds or thousands of objects. Lastly, it is

not clear that moving objects satisfy the Markovian property. Without it, the models will

not be very effective.

13

Chapter 3

Hot Route Detection

As previously mentioned, clustering is a very attractive problem in moving objects research.

It is a very natural question to ask about moving objects and algorithms can leverage much

of the current work in traditional clustering. A related question is to ask what are the hot

routes or the general traffic flow pattern in a city road network. The set of hot routes offers

direct insight into the city’s traffic patterns. City officials can use them to improve traffic

flow. Store owners and advertisers can use them to better position their properties. Police

officials can use them to maximize patrol coverage.

This is a challenging problem due to the complex nature of the data. If objects traveled

in organized clusters, it would be straightforward to use a clustering algorithm to find the

hot routes. But, in the real world, objects move in unpredictable ways. Variations in speed,

time, route, and other factors cause them to travel in rather fleeting “clusters.” These

properties make the problem difficult for a naive approach. To this end, we propose a new

density-based algorithm named FlowScan[51]. Instead of clustering the moving objects, road

segments are clustered based on the density of common traffic they share. We implemented

FlowScan and tested it under various conditions. Our experiments show that the system is

both efficient and effective at discovering hot routes.

Example 3 Figure 3.1(a) shows live traffic data1 in the San Francisco Bay Area on a week-

day at approximately 7:30am local time. Different colors show different levels of congestion

(e.g., red/dark is heavy congestion). 511.org in the Bay Area gathers such data in real-

1http://maps.google.com

14

time from RFID transponders located inside vehicles2. A likely hot route in Figure 3.1(a)

is A → B (i.e., highway CA-101). A is near the San Francisco International Airport. B

is near the San Mateo Bridge. Figure 3.1(b) shows a closeup view of location B. Three

additional locations x, y, and z are shown. Without actually observing the flow of traffic, it

is unclear whether y → x is a hot route, or y → z, or x → z. FlowScan aims to solve this

problem.

(a) (b)

Figure 3.1: Snapshot of San Francisco Bay Area traffic

At first glance, this may seem like an easy problem. A quick look at Figure 3.1(a) shows

the high traffic roads in red. With some domain knowledge, we know that San Francisco,

Oakland, and other densely populated regions are likely to be sources and destinations of

traffic since many people live and work there. However, such domain knowledge is not always

available. Additionally, real world traffic is a very complex data source. Objects do not travel

in organized clusters. Two objects traveling from the same place to another place may take

just slightly different routes at slightly different speeds and times. Random traffic conditions,

such as a traffic accident or a traffic light, can cause even more deviations. Furthermore,

hot routes do not have to be disjoint. Highways or major roads are popular pathways and

2http://www.bayareafastrak.org

15

several hot routes can share them. As a result, the mining algorithm must be robust to the

variations within a hot route and amongst a set of hot routes.

We now state our problem as follows: Given a set of moving object trajectories in a road

network, find the set of hot routes. A road network is represented by a graph G(V,E). E

is the set of directed edges, where each one represents the smallest unit of road segment.

V is the set of vertices, where each one represents either a street intersection or important

landmark. T is the set of trajectories, and each trajectory consists of an ID (tid) and a

sequence of edges that it traveled through: (tid, 〈e1, . . . , ek〉), where ei ∈ E. Objects can

only move on E and must travel the entirety of an edge. T is assumed to be collected from

a similar time window; otherwise, different time windows might blur meaningful hot routes.

Informally, a hot route is a general path in the road network which contains heavy traffic.

It represents a general flow of the objects in the network. Formally, it is a sequence of edges

in G. The edges need not to be adjacent in G, but they should be near each other. Further,

a sequence of edges in a hot route should share a high amount of traffic between them.

3.1 Solution Overview

FlowScan extracts hot routes using the density of traffic on edges and sequences of edges.

Intuitively, an edge with heavy traffic is potentially a part of a hot route. Edges with little

or no traffic can be ignored. Also, two near-by edges that share a high amount of traffic

between them are likely to be a part of the same hot route. This implies that the objects

traveled from one edge to the other in a sequence. And lastly, a chain of such edges is likely

to be a hot route.

We also list some possible alternative methods from related fields.

Alternative Method 1: Moving object clustering [21] discovers groups of objects that

move together. The trajectory of each cluster can be marked as a hot route. We call this

16

class of approaches AltMoving.

Alternative Method 2: Simple graph linkage is another possible approach. One could

gather all the edges in G with heavy traffic and connect them via their graph connectivity.

Then, each connected component is marked as a hot route. We call this class of approaches

AltGraph.

Alternative Method 3: Trajectory clustering [44] discovers groups of similar sub-trajectories

from the whole trajectories of moving objects. Each resultant cluster is marked as a hot route.

We call this class of approaches AltTrajectory.

FlowScan and the three alternative methods offer very different approaches to the same

data. One could view them in a spectrum. At one end of the spectrum are AltMoving and

AltTrajectory where attention is paid to the individual objects. This is helpful in problems

where the goal is to identify behaviors of individuals. At the other end of the spectrum

is AltGraph where attention is paid to the aggregate. That is, objects’ trajectories are

aggregated into summaries and analysis is performed on the summary. This is helpful in

problems where the goal is to learn very general information about the data. FlowScan can

be viewed as an intermediate between these two extremes. The behaviors of the individuals

(specifically, the common traffic between sequences of edges) are retained and affect high-

level analysis about aggregate behavior.

Aggregate
Analysis

Individual
Analysis

FlowScanAltMoving/AltTrajectory AltGraph

Figure 3.2: Spectrum view of FlowScan and alternative methods

17

3.2 Traffic Behavior in Road Networks

In this section, we list some common real world traffic behaviors and examine how FlowScan

and the alternative approaches can handle them.

3.2.1 Traffic Complexity

A major characteristic of real world traffic is the amount of complexity. Instead of neat

clusters, objects travel with different speeds and times even when they are on the same

route. For example, in a residential neighborhood, many people leave for work in the morning

and travel to the business district using approximately the same route. However, it is very

unlikely that a group will leave at the same time and also travel together all the way to their

destination. Various events (e.g., traffic light) can easily split them up.

Algorithms in the AltMoving class will not work very well with such complex data. Clus-

ters in the technical sense only last for a short period of time or short distance. The same is

true for AltTrajectory if speed/time is encoded into the trajectories. These algorithms lack

aggregate analysis and as a result, they are likely to find too many short clusters and miss

the overall flow. FlowScan connects road segments by the amount of traffic they share. So

even if the objects change slightly or if the objects do not travel in compact groups, the

amount of common traffic between consecutive edges in a hot route will still be high.

3.2.2 Splitting/Joining Hot Routes

Figure 3.3 shows a sample city traffic grid. The shade on each road segment indicates the

amount of traffic on it; the darker the shade, the heavier the traffic. Suppose the two correct

hot routes are A→ B → C and A→ B → D. Figure 3.3 shows a splitting of traffic at node

B: some objects which moved from A to B go to C while others go to D. There are also

other objects which move from C to D and vice-versa. This situation is very common in real

18

world traffic. B could be the location in Chicago where I-90/94 splits into I-90 and I-94.

A B

C

D

Figure 3.3: Splitting hot routes: A→ B → C and A→ B → D

With AltGraph, since all edges from A to C and D are connected, they would be incorrectly

identified as a single big hot route. Notice that there is no individual analysis in AltGraph.

With AltTrajectory, A → B and B → C will not be joined together because the physical

similarity between them is low (i.e., hard left turn). Likewise for A → B → D. This flaw

exists for the joining of traffic as well. In other words, if the arrows in Figure 3.3 were

reversed, it would illustrate the problem of two hot routes joining at B.

In FlowScan, edges B → C and B → D will not be connected directly because they do

not share any traffic. This is because physically, objects have to choose between the two

edges and cannot travel on both. Further, A → B will be connected to both B → C and

B → D because it shares traffic with both.

3.2.3 Overlapping Hot Routes

In addition to splits or joins, two hot routes may overlap each other. Figure 3.4 shows an

example with two distinct hot routes: A→ B and B → C. Situations like this are common.

Suppose B is a parking garage used by nearby residents during the night and incoming

workers during the day. In the morning, residents drive out of the parking garage (B → C)

and other people arrive from various locations to park (A→ B).

Consider how AltGraph will handle this situation. Since A→ B and B → C are connected

in G at node B, the two hot routes will be joined together incorrectly. This is due to the

19

A B C

Figure 3.4: Overlapping hot routes: A→ B and B → C

lack of individual analysis on the edges during linking. The same happens with AltTrajectory,

though for a different reason. A→ B and B → C’s shapes are similar and will be clustered

together. With FlowScan, consecutive edges within a hot route must share a minimum

number of common objects. If such edges were parts of different hot routes, this condition

will not be satisfied, and thus, a single erroneous hot route will not be formed.

3.2.4 Slack within Hot Routes

Figure 3.5 shows a hot route with some slight slack. A hot route exists from A to B in the

grid. At the intermediate locations, objects are faced with different choices in order to reach

B. Suppose the choices are essentially equivalent in terms of distance and speed and that

traffic is split equally between them.

B

A

Figure 3.5: Slack within a hot route: A→ B

Consider how AltMoving will handle this deviation. Suppose the distance between the

equivalent paths is larger than the maximum intra-cluster distance. This will cause the

cluster at A to break into several smaller clusters when it reaches B. Next, consider AltGraph.

Suppose the partitioning of traffic reduced the density on the intermediate edges to be below

the “heavy” threshold. This would break the graph connectivity condition and miss the hot

20

route from A to B. A similar error could occur with AltTrajectory if the traffic becomes

too diluted between A and B or if the shapes become too dissimilar. With FlowScan, edge

connectivity in G is not a required condition. Edges are connected in the hot route if they

share common traffic and if they are near each other. Here, as long as A is within a given

distance from B, the hot route will remain intact.

3.3 Density-based Hot Route Extraction

In this section, we will give formal definitions of FlowScan, which uses traffic density infor-

mation in road networks to discover hot routes.

3.3.1 Traffic-Density Reachability

Definition 1 (Edge Start/End) Given a directed edge r, let the start(r) be the starting

vertex of the edge and end(r) be the ending vertex.

Definition 2 (ForwardNumHops) Given edges r and s, the number of forward hops be-

tween r and s is the minimum number of edges between end(r) and end(s) in G. It is denoted

as ForwardNumHops(r, s).

Recall that G is directed. This implies that an edge that is incident to start(r) in G will

not have a ForwardNumHops value of 0 unless it is also incident to end(r).

Definition 3 (Eps-neighborhood) The Eps-neighborhood of an edge r, denoted by NEps(r),

is defined by NEps(r) = {s ∈ E |ForwardNumHops(r, s) ≤ Eps} where Eps ≥ 0.

The Eps-neighborhood of r contains all edges that are within Eps hops away from r, in

the direction of r. Semantically, this captures the flow of traffic and represents where objects

are within Eps hops after they exit r. Figure 3.6 shows the 1-neighborhood of edge r.

21

Note that having the forward direction in the Eps-neighborhood makes the relation non-

symmetric. In Figure 3.6 for example, the two edges in the circle are in the 1-neighborhood

of r, but r is not in the 1-neighborhood of either of them. In fact, the only time when the

Eps-neighborhood relation is symmetric is when two edges form a cycle within themselves.

This is usually rare in road networks with one exception, and that is when one considers two

sides of the same street. Figure 3.7 shows an example. In it, r0 is in the 1-neighborhood of

r1 and vice-versa, because they form a cycle. This will happen for all two-way streets in the

network. Though typically, an object will not travel on both sides of the same street within

a trajectory. It could only happen with U-turns or if one end of the street is a dead end.

rr

Figure 3.6: 1-neighborhood
of r.

r
r

1

0

Figure 3.7: Two sides of the
same street

We did not choose a spatial distance function (e.g., Euclidean distance), because the

number of hops better captures the notion of “nearness” in a transportation network. Con-

sider a single road segment in the transportation network. If it were a highway, it might be

a few kilometers long. But if it were a city block in downtown, it might be just a hundred

meters. However, since an object has to travel the entirety of that edge, the two adjacent

edges are the same “distance” apart no matter how long physically that intermediate edge

is.

Definition 4 (Traffic) Let traffic(r) return the set of trajectories that contains edge r. Re-

call trajectories are identified by unique IDs.

Definition 5 (Directly traffic density-reachable) An edge s is directly traffic density-

reachable from an edge r wrt two parameters, (1) Eps and (2) MinTraffic, if all of the

following hold true.

22

1. s ∈ NEps(r)

2. |traffic(r) ∩ traffic(s)| ≥ MinTraffic

Intuitively, the above criteria state that in order for an edge s to be directly traffic

density-reachable from r, s must be near r, and traffic(s) and traffic(r) must share some

non-trivial common traffic. The “nearness” between the two edges is controlled by the size

of the Eps-neighborhood. This directly addresses the slack issues in Section 3.2.4. As long

as the slack is not larger than Eps, two edges will stay directly connected via this definition.

The second condition of two edges sharing traffic is intuitive. It is also at the core of

FlowScan. The flaw of methods in the AltGraph class is that aggregation on the edges has

erased the identities of the objects. As a result, two edges with high traffic on them and near

each other will look the same regardless if they actually share common traffic. By having

the second condition rely on the common traffic, one can get a better idea of how objects

actually move in the road network.

Directly traffic density-reachable is not symmetric for pairs of edges because the Eps-

neighborhood is not symmetric. Though, for the same reasons that two edges might be in

the Eps-neighborhood of each other, two edges could be directly traffic density-reachable

from each other.

Definition 6 (Route traffic density-reachable) An edge s is route traffic density-reachable

from an edge r wrt parameters Eps and MinTraffic if:

1. There is a chain of edges r1, r2, . . ., rn, r1 = r, rn = s, and ri is directly traffic

density-reachable from ri−1.

2. For every Eps consecutive edges (i.e., ri, ri+1, . . ., ri+Eps) in the chain, |traffic(ri) ∩

traffic(ri+1) ∩ . . . ∩ traffic(ri+Eps)| ≥ MinTraffic.

23

Definition 6 is an extension of Definition 5. It states that two edges are route reachable if

there is a chain of directly reachable edges in between and that if one were to slide a window

across this chain, edges inside every window share common traffic. The sliding window

directly address the overlapping behavior as described in Section 3.2.3. At the boundaries

of two overlapping hot routes, the second condition will break down and thus break the

overlapping hot routes into two. The Eps parameter is being reused here to control the

width of a sliding window through the chain. The reuse is justified because their semantics

are similar, but one could just as well use a separate parameter.

The reason for using a sliding window is based on our observation that a trajectory

can contribute to only a portion of a hot route. This better matches real world hot route

behavior. For example, a hot route exists from the suburb to downtown in the morning.

Figure 3.8 shows an illustration. However, most people do not travel the entirety of the hot

route. More often, they live and work somewhere in between the suburb and downtown.

But in the aggregate, a hot route exists between the two locations.

S
ub

ur
bs

D
ow

nt
ow

n

Figure 3.8: Route traffic density-reachable

3.3.2 Discovering Hot Routes

The hot route discovery process follows naturally from Definition 6. It is an iterative process.

Roughly, one starts with a random edge, expands it to a hot route, and repeats until no

more edges are left. The question is then with which edge(s) should each iteration begin.

To this end, we introduce the concept of a hot route start, which is the first edge in a

hot route. Intuitively, an edge is a hot route start if none of its preceding directly traffic

24

density-reachable neighbors are part of hot routes.

Definition 7 (Hot Route Start) An edge r is a hot route start wrt MinTraffic if the

following condition is satisfied.

∣

∣

∣
traffic(r) \

⋃

{

traffic(x)
}

∣

∣

∣
≥ MinTraffic

where {x | end(x) = start(r) ∧ |traffic(x)| ≥ MinTraffic}.

The question is whether all hot routes begin from a hot route start. The following lemma

addresses this.

Lemma 1 (Hot Route Start) Hot routes must begin from a hot route start.

Proof : There are two ways for a hot route to begin on an edge r. The first way is when

MinTraffic or more objects start their trajectory at r. In this case, none of these objects

will appear in start(r)’s adjacent edges because they simply did not exist then. As a result,

the set difference will return at least MinTraffic objects and thus marking r as a hot route

start. The second way is when MinTraffic or more objects converge at r from other edges.

The source of traffic on r is exactly the set of edges adjacent to start(r). Suppose one of

these edges, x, contains more than MinTraffic objects on it. In this case, x is part of another

hot route, and the objects that moved from x to r should not contribute to r. However, if it

does not contain more than MinTraffic objects, it cannot be in a hot route and its objects

are counted towards r. If more than MinTraffic objects are counted towards r, then it is the

start of a hot route.

3.3.3 Algorithm

Definitions 6 and 7 form the foundation of the hot route discovery process. A simple approach

could be to initialize a hot route to a hot route start and iteratively add all route traffic

25

density-reachable edges to it. By repeating this process for all hot route starts in the data,

one can extract all the hot routes. The question is then how to efficiently find all route traffic

density-reachable edges given an existing hot route. If new edges are added in no particular

order, then one would have to search through all existing edges in the hot route at every

iteration. This is very inefficient. Further, if the hot route splits, it could become tricky if it

is in the middle.

To alleviate this problem, we restrict the growth of a hot route to be only at the last

edge. A hot route is a sequence of edges so the last edge is always defined. By growing the

hot route at the end one edge at a time, only the Eps-neighborhood of the last edge needs

to be extracted. This is much more efficient than extracting the Eps-neighborhoods of all

edges in the hot route. This is still a complete search because all possible reachable edges

are examined but just with some order. It is essentially a breadth-first search of the road

network. Then for each neighboring edge, the route traffic density-reachability condition is

checked against the last few edges of the hot route (i.e., window). If the condition is satisfied,

the edge is appended to the hot route; otherwise, the edge is ignored.

Sometimes, the number of directly traffic density-reachable edges from the last edge in

the hot route is larger than one. There are two causes for this. The first cause is multiple

edges within one hot route. This can happen when Eps is larger than 0, and multiple edges

of the hot route are in the Eps-neighborhood. This can be detected by checking to see if

the start()’s and end()’s match across edges. In this case, only the nearest edge is appended

to the hot route. The other edges will just be handled in the next iteration. The second

cause is when a hot route splits. In this case, the current hot route is duplicated, and a

different hot route is created for each split. The difference between these two cases can be

detected by checking the directly traffic density-reachability condition between edges in the

Eps-neighborhood.

The overall algorithm proceeds as follows. First, all hot route starts are extracted from

26

the data. This is done by checking Definition 7 for every edge in G. This step has linear

complexity because only individual edges with their Eps-neighborhoods are checked. Then,

for every hot route start, the associated hot routes are extracted. Algorithm 1 shows a

pseudo-code description.

Algorithm 1 FlowScan

Input: Road network G, object trajectory data T , Eps, MinTraffic.
Output: Hot routes R

1: Initialize R to {}
2: Let H be the set of hot route starts in G according to T

3: for every hot route start h in H do
4: r = new Hot Route initialized to 〈h〉
5: Add Extend Hot Routes(r) to R

6: end for
7: Return R

Procedure Extend Hot Routes(hot route r)

1: Let p be the last edge in r

2: Let Q be the set of directly traffic density-reachable neighbors of p

3: if Q is non-empty then
4: for every split in Q do
5: if route traffic density-reachable condition is satisfied then
6: Let r′ be a copy of r

7: Append split’s edges to r′

8: Extend Hot Routes(r′)
9: end if

10: end for
11: else
12: Return r

13: end if

One point of concern is efficiency. Suppose the adjacency matrix or list of the road net-

work fits inside main memory. Then, searching the graph is quite efficient. Retrieving the

list of TID’s at each edge will require disk I/O but traversing the graph will not. However,

suppose the adjacency matrix is too big to fit inside main memory. In this case, we in-

troduce two additional indexing structures to help the search process. Figure 3.9 shows an

27

illustration.

Edge Table

ID End VertexStart Vertex ID TID List

TID List TableVertex Index Tree

Figure 3.9: Indexing structures of FlowScan

All vertices of the road network are stored in a 2D index, e.g., R-tree (Vertex Index Tree).

All edges are stored on disk (Edge Table). Each edge record consists of the edge ID and its

starting and ending vertices (each vertex is an (x, y) tuple). Using these two data structures,

one can retrieve adjacent neighbors of an edge by querying the R-tree on the appropriate

vertex and then retrieving the corresponding edges in the Edge Table. The R-tree is quite

useful for finding adjacent neighbors of a specific edge since the coordinates of the adjacent

neighbors tend to be close to that of the edge.

We note that the Edge Table may be accessed repeatedly to retrieve adjacent neighbors.

This operation can be done more efficiently by exploiting locality. Specifically, if the physical

locality of edges in the road network is preserved in the Edge Table, one can reduce the

amount of disk I/Os. To this end, we create a clustering index on the Starting Vertex

attribute of the Edge Table. Assuming that each value is 4 bytes, each edge record is then

20 bytes. Then, if a page is 4K, it will contain approximately 200 edges. The intuition is that

these 200 edges will be physically close to each other in the road network. Because FlowScan

traverses through Eps-neighborhoods, it is highly likely that an edge and its neighbors will

be stored on the same page in the Edge Table. In this case, disk I/O will be reduced because

the page has already been fetched.

Lemma 2 (Completeness) The set of hot routes discovered by FlowScan is complete and

unique wrt. Eps and MinTraffic.

28

Proof : The above assertion is easy to see because the construction algorithm uses the

definition word-for-word, specifically Definition 6, to build the hot routes. Thus, given a hot

route start, the set of hot routes extending from it is guaranteed to be found. The question

is more about if the set of hot route starts found is complete. Because every edge in a hot

route must satisfy the MinTraffic condition, there must be a “first” in a sequence. The set of

hot route starts is simply these “firsts.” Lastly, ordering is not a factor in FlowScan, because

no marking or removal is done to G. Thus, it does not matter in which order H is processed.

3.3.4 Determining Parameters

There are two input parameters to the FlowScan algorithm: Eps and MinTraffic. The first

parameter, Eps, controls how lax FlowScan can be between directly reachable edges. A value

of 0 is too strict since it enforces strict spatial connectivity. A small value in the range of

2–5 is usually reasonable. In a metropolitan area, this corresponds to 2–5 city blocks; and

in a rural area, this corresponds to 2–5 highway exists.

As for MinTraffic, this is often application or traffic dependent. “Dense” traffic in a

city of 50,000 people is very different from “dense” traffic in a city of 5,000,000 people. In

cases where domain knowledge dictates a threshold, that value can be used. If no domain

knowledge is available, one can rely on statistical data to set MinTraffic. It has been shown

that traffic density (and many other behaviors in nature) usually obeys the power law. That

is, the vast majority of road segments have a small amount of traffic, and a relative small

number have extremely high density. One can plot a frequency histogram of the edges

and either visually pick a frequency as MinTraffic or use the parameters of the exponential

equation to set MinTraffic.

29

3.4 Experiments

To show the effectiveness and efficiency of FlowScan, we test it against various datasets.

FlowScan was implemented in C++ and all tests were performed on a Intel Core Duo 2

E6600 machine running Linux.

3.4.1 Data Generation

Due to the lack of real-world data, we used a network-based data generator provided by [10]3.

It uses a real-world city road network as the road network and generates moving objects on

it. Objects are affected by the maximum speed on the road, the maximum capacity of the

road, other objects on the road, routes, and other external factors.

The default generator provided generates essentially random traffic: an object’s starting

and end locations are randomly chosen within the network. In order to generate some

interesting patterns, we modified how the generator chooses starting and end locations.

Within a city network, “neighborhoods” are generated. Each neighborhood is generated by

picking a random node and then expanding by a preset radius (3–5 edges). Moving objects

are then restricted to start and end in neighborhoods.

Hot routes form naturally because of the moving object’s preference for the quickest path.

As a result, bigger roads (e.g., highways) are more likely to be chosen by the moving objects.

However, if too many objects take a highway or a road, it will reach capacity and actually

slow down. In such cases, objects will choose to re-route and possibly create secondary hot

routes.

3http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/

30

3.4.2 Extraction Quality

General Results

To check the effectiveness of FlowScan, we test it against a variety of settings. First, we

present the results for two general cases. Figure 3.10 shows several routes extracted from

10,000 objects moving in the San Francisco bay area. 10 neighborhoods of radius 3 each

were placed randomly in the map. Eps and MinTraffic were set to 2 and 300, respectively.

Each hot route is drawn in black with an arrow indicating the start and a dot indicating

the end. The gray lines in the figures indicate all traffic observed in the input data (not the

entire city map).

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Hot routes in San Francisco data map

Even though the neighborhoods were completely random, we get realistic hot routes in

this experiment. The hot routes in Figure 3.10(a) and 3.10(b) are CA-101 connecting San

Francisco and San Jose, a major highway in the area. Figures 3.10(c) and 3.10(d) correspond

31

to the Golden Gate Bridge connecting the city of San Francisco to the north. One of the

random neighborhoods must have been across the bridge so objects had no choice but to use

the bridge. Figure 3.10(e) shows a hot route connecting Oakland to that same neighborhood

across the Richmond-San Rafael Bridge. Lastly, Figure 3.10(f) corresponds to a hot route

connecting approximately Hayward to San Jose via I-880.

Next, Figures 3.11 shows three hot routes extracted from 5,000 objects moving in the

San Joaquin network. Three neighborhoods were picked in this network, each with radius of

3. Eps and MinTraffic were set to 2 and 400, respectively. In Figures 3.11(a) and 3.11(b),

the horizontal portions of the hot routes correspond to I-205. In Figure 3.11(b), the vertical

portion corresponds to I-5. Both these roads are major interstate highways. The roads in

Figure 3.11(c) are W. Linne Rd and Kason Rd. By looking at the city map, we observe that

they make up the quickest route between the two neighborhoods.

(a) (b) (c)

Figure 3.11: Hot routes in San Joaquin data map

Splitting Hot Route Behavior

We also tested FlowScan with some specific traffic behaviors. First, we test the case of a hot

route splitting into two. This data set is generated by setting the number of neighborhoods

in a road network to three and fixing the start node to be in one of the three. Because start

and destination neighborhoods cannot be the same, this forces the objects (1000 of them) to

32

travel to one of two destinations. And because the objects like to travel on big roads (due

to speed preference), they will usually leave the starting neighborhood using the same route

regardless of the final destination and split sometime later.

Figures 3.12(a) and 3.12(b) shows the two hot routes extracted from the data. Both hot

routes start at the green arrow at the lower right, move to the middle, and the split according

to their final destinations. In Figure 3.12(c), the result from an AltGraph algorithm is shown.

All edges that exceed the MinTraffic threshold (100) are connected if they are adjacent in the

road network. Obviously, the two hot routes are connected together because the underlying

objects are not considered. Figure 3.12(d) shows the result from a AltTrajectory algorithm

[44]. In it, 14 clusters were found. Because shape is a major factor in trajectory clustering,

the routes were broken into different clusters. The split is “detected” simply due to the hard

left-turn shape, but the routes are not intact. One could post-process the results and merge

near-by clusters, but this could run into the same problems as AltGraph since individual

trajectories are ignored.

Overlapping Hot Route Behavior

Next, we test the case of two hot routes overlapping. That is, one starts at the same place as

where the other one ends. To generate this data set, we also set the number of neighborhoods

to three. Let them be known as A, B, and C. Then, for half of the objects, their paths are

A → B; and for the other half, their paths are B → C. We set the radius of neighborhood

B to 0 to ensure that the two hot routes overlap.

Figure 3.13 shows the results of this test. As the graphs show, two hot routes were

extracted. Figure 3.13(c) shows a result with an AltGraph algorithm. Although B → C (not

shown) is correctly extracted in that algorithm, A→ B is not. It is incorrectly linked together

with B → C and erroneously forms A → B → C. This is because individual identities are

not considered in the algorithm. Figure 3.13(d) shows the result of AltTrajectory. 13 clusters

33

(a) FlowScan: A→ B (b) FlowScan: A→ C

(c) AltGraph (d) AltTrajectory

Figure 3.12: Splitting hot routes

were discovered. Again, the routes are not intact. But more seriously, the trajectories near

B are clustered into a single cluster because their shapes are similar.

3.4.3 Efficiency

Finally, we test the efficiency of FlowScan with respect to the number of objects. Figure

3.14 shows the running time as the number of objects increases from 2,000 to 10,000 with

MinTraffic set to 10%. All objects were stored in memory, and time to read the input data

is excluded. As the curve shows, running time increases linearly with respect to the number

of objects. Next, we test the difference in disk I/O using a clustered Edge Table vs. an

unclustered Edge Table. Figure 3.15 shows the result. Pages were set to 4K each and a

buffer of 10 pages was used. We excluded the I/Os of the Vertex Index Tree and the TID

34

(a) B → C (b) A→ B (c) AltGraph (d) AltTrajectory

Figure 3.13: Overlapping hot routes

List Table since they are the same in both cases. The figure shows the percent improvement

of the clustered Edge Table. It is a significant improvement ranging from 588% to over

800%. This value is relatively stable because the percent improvement depends more on the

structure of the network than the number of objects.

 0

 5

 10

 15

 20

 25

 2000 4000 6000 8000 10000

R
un

ni
ng

 T
im

e
(s

)

Number of Objects

Figure 3.14: Efficiency with respect to number of objects

35

 500

 600

 700

 800

 2000 4000 6000 8000 10000

P
er

ce
nt

 Im
pr

ov
em

en
t

Number of Objects

Figure 3.15: Disk I/O improvement of clustered index on Edge Table

36

Chapter 4

Sampling in Multidimensional Data

In many applications the complete source data is not available. Only a sample of the

population is available for study. In moving object analysis, this is often the case due to

either privacy protection or the size of the install base of the relevant technology. Nonetheless,

multidimensional aggregates, e.g., data cubes [23], are still needed for this data. This was

the motivation for our recent study [52]. Consider the following example.

Example 4 (Sampling Data) Nielsen Television Ratings in the United States are the pri-

mary source of measuring a TV show’s popularity. Each week, a show is given a rating,

where each point represents 1% of the US population. There are over 100 million televisions

in the United States, and it is impossible to detect which shows they are watching every

day. Instead, the Nielsen ratings rely on a statistical sample of roughly 5000 households

across the country. Their televisions are wired and monitored constantly, and the results are

extrapolated for the entire population.

This example shows a typical use of sampling data. In many real world studies about

large populations where the data collection is required, it is very difficult to gather the

relevant information from everyone in the population. It would be too expensive and often

simply impossible. Nonetheless, multidimensional analysis must be performed with whatever

data is available.

Example 5 (OLAP on Sampling Data) Advertisers are major users of TV ratings. Based

on the rating, they can estimate the viewership of their advertisements and thus pay appro-

37

priate prices. In order to maximize returns, advertisers want the maximum viewership of

their target audience. For example, if the advertised product is a toy, the advertiser would

want a TV show with children as its main audience. As a result, advertisers demand ratings

be calculated in a multidimensional way. Popular dimensions include age, gender, marital

status, income, etc.

To accommodate the multidimensional queries, attributes are recorded at the sampling

level, e.g., a recorded viewership for television show X might be attached to a “married male

with two children.” This leads directly to OLAP on multidimensional sampling data.

Compared to traditional OLAP, there is a subtle and yet profound difference. In both cases,

the intent or final conclusion of the analysis is on the population. But the input data are

very different. Traditional OLAP has the complete population data while sampling OLAP

only has a minuscule subset. Table 4.1 shows a summary of the differences.

Input Data Analysis Target Analysis Tool

Population Population Traditional OLAP
Sample Population Not Available

Table 4.1: Two models of OLAP application

The question is then “Are traditional OLAP tools sufficient for multidimensional anal-

ysis on sampling data?” The answer is “No” for several reasons. First is the lack of data.

Sampling data is often “sparse” in the multidimensional sense. When the user drills down on

the data, it is very easy to reach a point with very few or no samples even when the overall

sample is large. Traditional OLAP simply uses whatever data is available to compute an

answer. But to extrapolate such an answer for the population based on a small sample could

be very dangerous. A single outlier or a slight bias in the sampling can distort the answer

significantly. For this reason, the proper analysis tool should be able to make the neces-

sary adjustments in order to prevent a gross error. Second, in studies with sampling data,

statistical methods are used to provide a measure of reliability on an answer. Confidence

38

intervals are usually computed to indicate the quality of answer as it pertains to the popula-

tion. Traditional OLAP is not equipped with such tools. And lastly is the challenge of high

dimensionality in the input data. While common to many other problems, sampling data

analysis offers some new challenges such as the relationship between the quality of samples

and an extremely large number of subspaces.

Example 6 (Usage Example) To give a more concrete application of multidimensional

sampling data, consider a retail outlet trying to find out more about its customers’ an-

nual income levels. In Table 6.1, a sample of the survey data collected is shown1. In the

survey, customers are segmented by four attributes, namely Gender, Age, Education, and

Occupation.

Gender Age Education Occupation Income

Female 23 College Teacher $85,000
Female 40 College Programmer $50,000
Female 31 College Programmer $52,000
Female 50 Graduate Teacher $90,000
Female 62 Graduate CEO $500,000
Male 25 Highschool Programmer $50,000
Male 28 Highschool CEO $250,000
Male 40 College Teacher $80,000
Male 50 College Programmer $45,000
Male 57 Graduate Programmer $80,000

Table 4.2: Sample survey data

First, the manager tries to figure out the mean income level of programmers in their

customer base (i.e., Occupation = Programmer). The mean income for them is $55,400

with a 95% confidence interval of ± $12,265. This seems like a reasonable answer to the

manager. Next, the manager queries for the mean income of teachers in the 30–40 age range.

Although the data only contains one sample matching this criterion, an “expanded” answer

of $85,000 ± $5,657 with 95% confidence is returned and the manager is satisfied.

1For the sake of illustration, ignore the fact that the sample sizes are too small to be statistically mean-
ingful.

39

To this end, this chapter proposes the Sampling Cube framework [52], which adds the

following features to the traditional OLAP model: (1) Calculations of point estimates and

confidence intervals for all queries are provided. Algebraic properties of the measures are

exploited to make the calculations efficient. (2) When a query reaches a cell with too few

samples, the query is “expanded” to gather more samples in order to improve the quality of

the answer. The expansion takes advantage of the OLAP structure to look for semantically

similar segments within the queried cuboid and also nearby cuboids. Two sample hypothesis

testing is performed for expansion candidates, and the ones that pass are merged with query

segment to produce the final answer. (3) Lastly, to handle the high dimensionality problem,

the Sampling Cube Shell is proposed. Instead of materializing the full sampling cube,

only a small portion of it is constructed. But unlike other cube compression schemes, the

selection is based on the quality of sampling estimates. In tests with real world sampling

data, the framework is shown to be efficient and effective at processing various kinds of

queries.

The rest of the chapter is organized as follows. In Section 4.1, formal definitions of the

problem are given. Section 4.2 describes the whole sampling cube framework of efficient

aggregation and query expansion. Section 4.3 describes the sampling cube shell with opti-

mizations for high dimensional data. Section 4.4 shows experimental results with respect to

query efficiency and effectiveness.

4.1 Definitions

4.1.1 Data Cube Definitions

Before giving the proper problem definitions, we will review the data cube model. Given a

relation R, a data cube (denoted as CR) is the set of aggregates from all possible group-by’s

on R. In an n-dimensional data cube, a cell c = (a1, a2, . . . , an : m) (where m is the cube

40

measure on some value) is called a k-dimensional group-by cell (i.e., a cell in a k-dimensional

cuboid) if and only if there are k (k ≤ n) values among (a1, a2, . . . , an) which are not ∗

(i.e., all). Given two cells c1 and c2, let V1 and V2 represent the set of values among their

respective (a1, a2, . . . , an) which are not ∗. c1 is the ancestor of c2 and c2 is a descendant of

c1 if V1 ⊂ V2. c1 is the parent of c2 and c2 is a child of c1 if V1 ⊂ V2 and |V1| = |V2| − 1.

These relationships also extend to cuboids and form a structure called the cuboid lattice. An

example is shown in Figure 4.1. The “All” or apex cuboid holds a single cell where all its

values among (a1, a2, . . . , an) are ∗. On the other extreme, the base cuboid at the bottom

holds cells where none of its (a1, a2, . . . , an) values is ∗.

BC

B

ABC

ACAB

A C

All

Figure 4.1: Cuboid lattice

Table 4.2 is an example of R. Each tuple corresponds to a person being sampled. The

four attributes: Gender, Age, Education, and Occupation, segment the person. And finally,

the value of the data is the Income of the person.

The query model follows the semantics of a data cube being constructed on the input

relation R. More specifically, the user can pick any cell in CR and ask for information about

V for that cell. The measure of the cube (e.g., average, sum) is computed on V and returned.

In the motivating example, the first query of Occupation=Programmer is essentially a cell

in the Occupation cuboid with all other dimensions set to ∗ or “don’t care.” The measure

of the cube is the average of Income.

41

4.1.2 Problem Definition

As Example 6 showed, there are a few additional features than traditional OLAP. First,

given α as a confidence level (e.g., 95%), all cell queries to CR should return a confidence

interval of α confidence in addition to the measure as an answer. In comparison to traditional

OLAP, the confidence level indicates the reliability of the measure to the user. Second, given

minsup as a minimum support on the number of samples, if a cell’s sample size does not

satisfy minsup (i.e., sample size < minsup), “similar” cells in the data cube will be used to

“boost” the confidence interval if certain criteria are satisfied. Lastly, if there is insufficient

space to materialize the full data cube, a new methodology is needed to answer queries.

4.1.3 Confidence Interval

To make future discussions easier, a quick review of confidence interval calculation is given

here [27].

Let x be a set of samples. The mean of the samples is denoted by x̄, and the number

of samples in x is denoted by l. Assuming that the standard deviation of the population is

unknown, the sample standard deviation of x is denoted by s. Given some desired confidence

level, the confidence interval for x̄ is

x̄± tcσ̂x̄ (4.1)

where tc is the critical t-value associated with the confidence level and σ̂x̄ = s√
l

is the

estimated standard error of the mean. To find the appropriate tc, one has to know the

desired confidence level (e.g., 95%) and also the degree of freedom, which is just l − 1.

42

4.2 The Sampling Cube Framework

This section will describe the full framework of providing OLAP to sampling data. Specifi-

cally, it will describe how to store the sample data in a data cube structure named Sampling

Cube, how to efficiently aggregate the data, and how to use similar neighboring cells to boost

confidence. For now, only full materialization of this sampling cube is discussed. In other

words, all cuboids and cells are constructed. The next section will discuss alternatives when

full materialization is unrealizable.

4.2.1 Materializing the Sampling Cube

Given the base relation (base cuboid) in R, it is straightforward to construct CR. There

are many algorithms to efficiently do this [9, 82]. They all essentially provide an efficient

way of traversing the cuboid lattice space in order to minimize the scanning of the data. In

the sampling cube, the new question is how to efficiently calculate the confidence interval

at high-level cells. The näıve way is to gather all the corresponding raw samples in the

original input data and calculate the sample mean, sample standard deviation, and then

the confidence interval. However, this is not very efficient since many cells contain a large

number of samples. To repeat the computation for every cell in CR is expensive and also

redundant since the samples are shared between cells.

In traditional OLAP, this problem is solved by exploiting certain properties of the cube

measure. There are two popular properties: distributive and algebraic. A measure is

distributive if it can be computed solely based on the measures of its subsets, and a measure

is algebraic if it can be computed based on a bounded number of measures of its subsets.

Sum is an example of a distributive measure and mean is an example of an algebraic measure.

These two properties are desirable because they facilitate very efficient aggregation. In this

work, the measures of the cube are mean and confidence interval. Mean is known to be

43

algebraic. The attention now turns to confidence interval. It is easy to see that it is definitely

not distributive. But is it algebraic?

Lemma 3 The confidence interval measure is algebraic.

Proof 1 There are three terms in the confidence interval computation. First is the mean

of the sample set, x̄. This was shown to be algebraic already. Second is the critical t-value,

which is calculated by a lookup. With respect to x, it depends on l (count) and it is easy to

see that count is distributive. The final term is σ̂x̄ = s√
l
, which also turns out to be algebraic

if one records the linear sum (
∑l

i=1 xi) and squared sum (
∑l

i=1 x2
i).

To summarize, the mean and confidence interval measures of the data cube are algebraic.

At every cell, exactly three values are sufficient to calculate them; all of which are either

distributive or algebraic. They are the following:

1. l

2. sum =
∑l

i=1 xi

3. squared sum =
∑l

i=1 x2
i

With this knowledge in hand, constructing the sampling cube is very clear now. Any

of the previously developed cubing algorithms can be used with just aggregating the three

above values in each cell. At query time, the three values are then used to compute the

mean and confidence interval.

4.2.2 Boosting Confidence for Small Samples

Now that the sampling cube is materialized, the next step is to use it. Recall that queries are

point or range queries posed against the cube. Without loss of generality, consider the case

of a point query, which corresponds to a cell in CR. The goal is to provide an accurate point

44

estimate (in the example, the sample mean of Income) for the samples in that cell. Because

the cube also reports the confidence interval associated with the sample mean, there is some

measure of “reliability” to the answer. If the confidence interval is small, the reliability is

deemed good. But if the interval is large, the reliability is questionable.

Consider what affects the size of the confidence interval. There are two main factors.

The first is the variance of the sample data. A rather large variance in the cell may indicate

that the chosen cube cell is not good for prediction and a better solution is probably to drill

down on the query cell to a more specific one, i.e., asking more specific queries. Second, a

small sample size can cause a large confidence interval. When there are very few samples,

the corresponding tc is large because of the small degree of freedom. This in turn could cause

a large confidence interval. Intuitively this makes sense. Suppose one is trying to figure out

the average income of people in the United States. Just by asking 2 or 3 people does not

give much confidence to the answer.

The best way to solve this small sample size problem is to simply get more data. This,

however, is easier said than done. Gathering data is often the most expensive part of the

analysis. So what can be done instead? Fortunately, there is an abundance of additional

data available already. They do not match the query cell exactly, but they are conveniently

organized in a structured data cube. Perhaps they can be used if certain criteria are met.

Figure 4.2 shows the two possible methods to “expand” the query and get more data to

boost confidence. They both expand the original query in the data cube, just in different

directions.

Intra-Cuboid Query Expansion

In the intra-cuboid case, the expansion occurs by looking at nearby cells in the same cuboid as

the queried cell. But as mentioned before, careful consideration is needed before expansion.

The new samples should only serve the purpose of increasing the confidence in the answer

45

(Age, Occupation) cuboid

(a) Intra-Cuboid Ex-
pansion

Age cuboid Occupation cuboid

(Age, Occupation) cuboid

(b) Inter-Cuboid Expansion

Figure 4.2: Query expansion within sampling cube

and not change the semantic of the query. There are two primary questions to answer. First,

“Which dimension(s) should be allowed to expand?” And second, “Which value(s) within

those dimension(s) should the expansion use?”

To answer the first question, dimensions which are uncorrelated or weakly correlated with

the measure value (i.e., the value to be predicted) are the best candidates for expansion.

Expanding within these dimensions will likely increase the sample size and not shift the

answer of the query. Consider an example of a 2D query specifying Education = “College”

and Birth Month = “July”. Let the cube measure be average Income. Intuitively, educa-

tion has a high correlation to income while birth month does not. As a result, it would be

harmful to expand the Education dimension to include values such as “Graduate” or “High

School.” They are likely to alter the final result. However, expansion in the Birth Month

dimension to include other month values could be helpful, because it is unlikely to change

the result but will increase sampling size.

To mathematically measure the correlation of a dimension to the cube value, the cor-

relation between the dimension’s values and their aggregated cube measures is computed.

Pearson’s correlation coefficient for numerical data and χ2 value for categorical data are

popularly used correlation measures (although there are many other measures, such as co-

46

variance, can be used) [27]. A dimension that is strongly correlated with the value to be

predicted should not be a candidate for expansion. Notice that since the correlation of a

dimension with the cube measure is independent of a particular query, it should be precom-

puted and stored with the cube measure to facilitate efficient online analysis.

Now that the possible dimension(s) for expansion have been selected, the next step is

to select the values within those dimensions. This relies on the semantic knowledge of the

dimensions in question. The goal should be to select semantically similar values in order

to minimize the risk of altering the final result. Consider the Age dimension, similarity

of values in this dimension is clear. There is a clear order to the values. For dimensions

with numerical or ranked data (e.g., Education), such an ordering is clear and one should

select values closer to the instantiated query value. For categorical data with its dimension

organized in a multilevel hierarchy in a data cube (such as location), one should select those

values located in the same branch of the tree (such as in the same district or city).

When such domain knowledge exists, semantically similar cells maybe used to boost the

confidence interval of the query cell. Figure 4.2(a) shows an illustration. But when such

knowledge does not exist, one has to be very careful in how other cells are used. A näıve

approach could be to simply compare the query cell vs. all other cells in the dimension and

use the most similar. But this could easily fall into the trap of “self-fulfilling prophecy.” This

is a term used in sociology where pre-existing beliefs about a false outcome evoke behavior

that actually brings the outcome to fruition. In the case of intra-cuboid expansion with

no domain knowledge, one has to be careful of this problem. Just blindly using cells that

contain similar values may bring about an answer that does not semantically meaningful.

Even though strongly correlated dimensions are precluded from expansion, yet another

precaution should be taken to ensure that expansion does not alter the answer of the query.

In other words, the new samples should share the same cube value (e.g., mean income) as the

existing samples in the query cell. A method in statistics to determine whether two samples

47

have the same mean (or any other point estimate) is the Two Sample T-Test [27]. This

is a relatively simple and statistically sound test used in many applications. Due to space

restrictions, we will skip its definitions. At a high level, the test will determine whether two

samples have the same mean (the null hypothesis) with the only assumption being that they

are both normally distributed. The test fails if there is evidence that the two samples do not

share the same mean. Furthermore, the tests can be performed with a confidence level as

an input. This allows the user to control how strict or loose the query expansion will be. As

it turns out, the aforementioned three values recorded at each data cube cell are sufficient

to perform the two sample t-test. This allows the test to be performed efficiently given any

two cells in the data cube.

Example 7 (Intra-Cuboid Expansion) Given the input relation in Table 4.2, let a query

be “Age = 25” at 95% confidence. This returns an Income of $50,000 with a rather large

confidence interval2. Since this confidence interval is larger than the preset threshold and the

Age dimension was found to have little correlation with Income in this dataset, intra-cuboid

expansion starts within the Age dimension. The nearest cell is “Age = 23,” which returns

an Income of $85,000. The two sample t-test at 95% confidence passes so the query expands;

it is now “Age = {23, 25}” with a smaller confidence interval than initially. However, it

is still larger than the threshold so expansion continues to the next nearest cell: “Age =

28”, which returns an Income of $250,000. The two sample t-test between this cell and the

original query cell fails; as a result, it is ignored. Next, “Age = 31” is checked and it passes

the test. The confidence interval of the three cells combined is now below the threshold and

the expansion finishes at “Age = {23, 25, 31}.”

In summary, dimensions not correlated with the cube measure are chosen as candidates

for intra-cuboid expansion. Semantic similarity of the dimension’s values are used to slowly

2For the sake of the example, suppose this is true even though there is only one sample. In practice, there
should be a few more points to calculate a legitimate value.

48

expand a neighborhood of candidate cells around the query cell. For each candidate cell,

the two sample t-test is performed to decide whether the candidate cell should be included

in the expansion. When there is no semantic knowledge available, it might be unwise to

expand unless the particular application calls for it.

Inter-Cuboid Query Expansion

The choices in inter-cuboid query expansion are slightly easier. Figure 4.2(b) shows an

illustration. The expansion occurs by looking to a more general cell (drawn in black). In the

figure, the cell in cuboid Age, Occupation can either use its parent in Age or Occupation.

One can think of inter-cuboid as just an extreme case of intra-cuboid where all the cells

within a dimension are used in the expansion. This essentially sets the dimension to ∗ and

thus generalizes to a higher level cuboid.

Given a k-dimensional cell, there are k possible direct parents in the cuboid lattice.

Though there are many more ancestor cells in the data cube if multiple dimensions are

allowed to be rolled up simultaneously, only one is allowed here to make the search space

tractable and also to limit the change in the semantics of the query. Using similar tests as

the last section, correlated dimensions are not allowed in inter-cuboid expansions. Within

the uncorrelated dimensions, the two sample t-tests can be performed to confirm that the

parent and the query cell share the same sample mean. If multiple parent cells pass the test,

the confidence level of the test can be adjusted progressively higher until only one passes.

Alternatively, multiple parent cells can be used to boost the confidence simultaneously. The

choice is application dependent.

Example 8 (Inter-Cuboid Expansion) Given the input relation in Table 4.2, let the

query be “Occupation = Teacher ∧ Gender = Male.” There was only one matching sample

in Table 4.2 with Income = $80,000. Suppose the corresponding confidence interval is larger

than the preset threshold. There are two parent cells in the data cube: “Gender = Male” and

49

“Occupation = Teacher.” By moving up to “Gender = Male” (and thus setting Occupation

to ∗), the mean Income is $101,000. A two sample t-test reveals that this parent’s sample

mean is not the same as the original query cell’s. So it is ignored. Next, “Occupation =

Teacher” is tried. It contains a mean Income of $85,000 and passes the two sample t-test.

As a result, this new value is used and the query is expanded to “Occupation = Teacher.”

Though the above method will work for inter-cuboid expansion, there is another method

which makes more sense computationally. Instead of looking at the problem as expanding

from the query cell up to a more general cell, one could look at it as the more general

cell looking down at the query cells (i.e., its children) and making its determinations about

expansion. This method leads directly into the next section about the sampling cube shell.

Expansion Method Selection

Before moving on, some discussion is needed about intra-cuboid expansion vs. inter-cuboid

expansion. This is a difficult question to answer a priori without knowing the data and the

application. The first guideline in choosing between the two should be what is the tolerance

for change in the semantics of the query. This depends on the specific dimensions chosen

in the query. For instance, the user might tolerate a bigger change in semantics for the

Age dimension than Education. The difference in tolerance could be so large that he/she is

willing to set Age to ∗ (i.e., inter-cuboid expansion) than letting Education change at all.

If no domain knowledge is available, the main quantitative guides are the correlation

coefficients and the two sample t-test between the query cell and the possible expansion

cells. The value of the correlation coefficient is an indication of expansion’s safety. And by

progressively setting higher confidence levels in the test, one could choose between the two

expansion methods by seeing which one passes the higher confidence level test. This offers a

numerical way of comparing between the two choices, but in a real world application, domain

knowledge is definitely a better method of making the ultimate choice.

50

4.3 The Sampling Cube Shell

So far, the discussion has only focused on the full materialization of the sampling cube.

In many real world problems, this is often impossible. Even given a modest number of

dimensions in the base data, constructing the whole data cube can be prohibitive. Recall

that the number of cuboids in a data cube is exponential with respect to the number of

dimensions. So even with just 20 dimensions, 220 cuboids can be quite a pain to handle. The

real world survey data used in this work’s experiments contains over 600 dimensions!

Clearly, another methodology is needed. Ideally, this new methodology should be able to

provide the same or close to the same answers as the full sampling cube with a much smaller

computation and storage requirement.

To motivate the proposal, first imagine what a typical query will be. An analyst will

select some specific values in some dimensions and ask for the confidence interval in that

cell. But most likely, the number of dimensions specified in the query will be low (≤ 5: e.g.,

Age, Gender, Marital Status, Income Level, etc.). To specify a high dimensional cell is

to target a very specific segment of the population. One that is probably too specific to be

of any value. This means that high dimensional cuboids are probably not needed.

Second, consider what would happen if Birth Month were a dimension in Table 4.2.

Clearly, there should not be any correlation between the month of a person’s birth date and

his or her income level. This can be statistically verified by checking the standard deviation

or the confidence level (both of which should be large) of the cells in the Birth Month

cuboid. Now recall the ultimate goal of the user. It is to extract meaningful information

about the cube value (e.g., Income). If the sample standard deviation of the value is high for

many cells in a cuboid, it indicates that there is little information to be found in this cuboid.

Therefore, there is probably little utility in presenting the cuboid to the user. Furthermore,

additional higher level cuboids that combine with Birth Month can probably be skipped,

51

too. This drastically cuts down on the size of the sampling cube since it essentially removes

one dimension.

This motivation leads directly to the proposal of the Sampling Cube Shell. As the

name suggests, it is a “shell” around the complete sampling cube that only computes some of

the outer layers. Figure 4.3 shows a sample illustration. In it, only a portion of the cuboids

are materialized (the shaded ones). They are the shell around the data cube and will be

used to answer the queries.

BC

B

ACAB

A C

All

ABC

Figure 4.3: Sampling Cube Shell

4.3.1 Building the Sampling Cube Shell

The algorithm to build the sampling cube shell is top-down. It starts at the apex cuboid

and proceeds down the cuboid lattice towards the base cuboid. The search in this space is

iterative and greedy: in each iteration, the best candidate cuboid is chosen and added to

the shell. This process halts until some stopping condition is met. The condition could be a

space constraint, i.e., number of cuboids built cannot exceed some value. Or it could be an

information constraint, i.e., the gain in building a new cuboid must exceed some minimum.

Cuboid Standard Deviation

The first question is how to compare cuboids (in order to get to the greedy selection). This

requires a measure on the “goodness” of a cuboid.

52

Definition 8 (Cuboid Standard Deviation) Given a cuboid B with m cells {c1, . . . , cm},

the Cuboid Standard Deviation (CSD) is defined as

CSD(B) =

∑m

i=1 s(ci)×
n(ci)
n(B)

1−
Pm

i=1
small(ci)

m

where s(ci) is the sample standard deviation of the samples in ci, n(ci) is the number of

samples in ci, n(B) is the total number of samples in B, and small(ci) is a function which

returns 1 if n(ci) ≥ minsup and 0 otherwise. If the denominator is 0, CSD is defined to be

∞.

The CSD of a cuboid measures the amount of variance with respect to the cube value

in its cells. Obviously, the lower the value of CSD, the better the cuboid is at capturing

the correlation between its cells and the value. The definition of CSD achieves this using

a linear combination of its cells’ standard deviations. In the final summation, the standard

deviations are weighted by the sizes of the cells. As a result, if only a small percentage of

the cells have low standard deviation but they hold the majority of the sampled data, they

will have a large effect on the CSD of the cuboid.

For practical reasons, two minor adjustments are made to the CSD calculation. First,

if s(ci) is very small (< minsd), it is set to 0. In other words, if the standard deviation of

the cube values in a cell is already quite small, it is unnecessary to further examine that

cell’s subsets since they would contain the same behavior. Setting the s(ci) to 0 reflects

this notion. Second, if n(ci) < minsup, ci is ignored. In such cases with so few samples in

the cell, it is meaningless to measure any information from them. But, a situation could

arise where a large portion of the cuboid’s cells have small n(ci). For example, consider a

dimension storing unique IDs of samples. In this case, the standard deviation of all cells

would be 0 since each cell contains exactly one sample. The CSD is low at 0, but the cuboid

is actually useless since its cells do not offer any generalization power. To penalize this type

53

of situation, the denominator in the CSD calculation is set to reweigh the standard deviation

calculations in the numerator by the percentage of so called “small” cells in the cuboid. Both

these adjustments will come in handy later on during the construction of the cube shell.

Cuboid Standard Deviation Reduction

Given CSD as a measure of a cuboid’s cells’ correlation with the cube value, it is now possible

to compare different cuboids quantitatively. However, in order to use it in the construction

algorithm, another definition is needed to measure the incremental gain of a cuboid.

Definition 9 (Cuboid Standard Deviation Reduction) Given a cuboid B and parents(B)

as the set of B’s parents in the cuboid lattice, the Cuboid Standard Deviation Reduction

(CSDR) is defined as

CSDR(B) =

[

min
B′ ∈ parents(B)

CSD(B′)

]

− CSD(B)

The CSDR of a cuboid measures the reduction in CSD from one of its parents. Because

the data cube is a lattice and not a tree, a cuboid can have multiple parents. To maximize

the gain, the reduction is measured from the best parent.

Cube Shell Construction

Building the sampling cube shell is a top-down and greedy process. It uses CSDR to select

the best cuboid in each step of growing the cube shell. Initially, only the All or apex cuboid

exists. By definition, it contains exactly one cell and the standard deviation of it is the

standard deviation of all the samples put together. The child cuboids of the apex cuboid

are then added into a candidate set. The CSDR of each cuboid is computed. The candidate

cuboid with the best CSDR is chosen and added to the shell. Its children in the cuboid

lattice are added to the candidate set. This process iterates until a stopping criterion is met.

54

Note that the final data structure is not strictly a tree since a node could have multiple

parents. It is just a portion (i.e., shell) of the complete data cube lattice.

Two pruning methods are used in order to improve both the efficiency and the effective-

ness of the resultant shell. They are directly related to the two adjustments made to the

CSD calculation earlier.

First, if a cell’s standard deviation is very low (< minsd), its descendant cells are removed

from future consideration. The reason for this is that if the samples in a cell already share

basically the same value for the point estimate, it is pointless to examine its sub-segments

since most likely they will just produce the same values. This, in effect, achieves inter-cuboid

query expansion. At runtime, if the query cell is one of the pruned descendant cells, it will

not be found but the parent cell will be. The point estimate from the parent cell will then be

used in substitute, but it will be fairly accurate since the standard deviation in its samples

is so low. In essence, the query cell has been expanded to the parent cell a priori. Detailed

discussion of query processing will be given in the next section.

Second, for every cell, if its sample size does not satisfy a minimum support threshold (<

minsup), its descendant cells in the descendant cuboids are removed from future considera-

tion. Intuitively, this supports the idea that if a segment is already very small, it is fruitless

in analyzing its sub-segments, which could only get smaller. This is essentially the idea of

the iceberg cube [9].

Algorithm 4.3.1 shows the shell construction algorithm in pseudo-code.

There are two possible ways the algorithm could halt, and the choice between them

depends on the application. The first is the size of the shell. This is a natural halting criterion

if storage space is the primary concern. As the next section and also later experiments will

show, the bigger the shell, the higher the quality of query processing. The second criterion

could be a minimum CSDR. At each iteration, if the largest CSDR in the candidate set does

55

not exceed some minimum, the algorithm halts.

Example 9 (Shell Construction) To make the algorithm more concrete, consider how it

will work on the example data in Table 4.2. Initially, the candidate set only includes the apex

cuboid of R. The CSD of this cuboid is simply the standard deviation of all rows in R, which

is 143,760. Next, since it is the only cuboid in the candidate set, it is added to the shell.

Its four descendants, which are the one-dimensional cuboids, Gender, Age, Education, and

Occupation are added to the candidate set. Table 4.4(a) shows the CSD and CSDR of each

candidate cuboid. For the sake of this example, values in the Age cuboid are binned into 4

ranges: 21–30, 31–40, 41–50, and 51+. This produces a more reasonable CSD value for the

Age cuboid. Since these cuboids all share the same parent, their CSDR are all calculated with

respect to the apex. This ends the first iteration of the algorithm.

In the second iteration, the best candidate cuboid according to its CSDR value in Table

4.4(a), the Occupation cuboid, is added to the shell. Its descendants, which are all the 2D

cuboids that extend from Occupation, are added to the candidate set. Their CSDR values

are calculated with respect to Occupation. Figure 4.4(b) shows the structure of the shell

after the addition, and Table 4.4(c) shows the new candidate set with CSD and CSDR values.

In the next iteration, the cuboid with the best CSDR, Age, is added to the shell. Figure

4.4(d) shows the result of this addition. Its descendants are added to the candidate set and

the algorithm continues.

4.3.2 Query Processing

The final step is to process queries using the sampling cube shell. Recall that the query

model consists of point queries in the data cube of the input relation. Because the sampling

cube shell is not the complete data cube and does not contain all possible cuboids, there are

three possibilities at query time.

56

Candidate Cuboid CSD CSDR

Gender 139,196 4,564
Age 102,836 40,924
Education 109,485 34,275
Occupation 43,852 99,908

(a) Candidate set after first iteration

Apex

Occupation

(b) Cube shell after first it-
eration

Candidate Cuboid CSD CSDR

Gender 139,196 4,564
Age 102,836 40,924
Education 109,485 34,275
(Gender, Occupation) 13,338 30,514
(Age, Occupation) 45,287 -1,435
(Education, Occupation) 6,261 37,591

(c) Candidate set after second iteration

Age

Apex

Occupation

(d) Cube shell after second itera-
tion

Figure 4.4: Sampling cube shell construction example

Exact Dimension Match

First, the queried dimensions match one of the cuboids in the shell. In this case, the answer

to the query exists in the shell already and it is simply returned.

Subset Dimension Match

Second, the queried dimensions are a subset of one of the cuboids in the shell. For instance,

the queried dimension could be Gender and only the (Age, Gender) cuboid (and not the

Gender cuboid) exists in the shell. This is entirely possible due to the build order of the

construction algorithm. In this case, the exact answer is produced by scanning the superset

cuboid in the shell for the appropriate rows and computing the necessary values on the fly.

Superset Dimension Match

So far, the answers produced have been lossless with respect to the full sampling cube. They

either exist in the shell or can be computed in the shell from more specific cells. The last case

57

to handle is when the queried dimensions are a superset of all cuboids in the shell. Though

technically the query model allows any cell in the data cube to be queried, most likely it

will be in the low dimensional ones (≤5 dimensions). This was one of the motivations of

the sampling cube shell in the first place. In other words, if this case occurs, most likely the

sampling cube shell will contain a cuboid that is not very far off from the queried dimensions.

For example, the queried dimensions could be (Age, Gender, Occupation), and the largest

cuboid in the shell only contains two dimensions.

In this case, a careful assessment is needed. In general, the queried dimensions could

have a superset relationship to multiple cuboids in the shell. In the example above, both

(Age, Gender) and (Age, Occupation) could exist in the shell and be used to answer the

query. This raises two questions. First, which cuboid in the shell should be used? And

second, how will the cuboid be used to answer the query?

In general, let there be k cuboids, B1 . . . Bk, in the sampling cube shell whose dimensions

are subsets of the queried dimensions. Other than scanning base table, these k cuboids are

the only sources of information about the query cell in the shell. But since they are all more

general than the query cell, the final answer will have to be approximated from them.

The question is then which of the k cuboids should be used. The first goal should be to

pick the cuboid that is closest to the query cuboid in the cuboid lattice. Semantically, this is

the closest source of information. In general, multiple cuboids could tie for being the closest.

Let there be k0 of these where k0 ≤ k. Within these k0 cuboids, the average of the point

estimates at the relevant cells is then the point estimate answer for the query. In testing,

several methods were tried, including weighted average by sampling size, weighted average

by confidence interval size, choosing the cuboid with the highest confidence, and choosing

the cuboid with the smallest sampling size. The simple average turns out to be the best due

to the fact that it is not affected by any biases in sampling which could place an uneven

number of samples in different cuboid cells. In testing, this was also confirmed to be the

58

best on average.

Figure 4.5 shows a sample query in the (Age, Occupation) cuboid. Suppose that cuboid

does not exist in the cube shell, but Age, Occupation, and the apex do. As a result, there are

3 ancestor cells in the cube shell. The cells in Age and Occupation are 1 hop away from the

query cell in the cuboid lattice and the apex cell is 2 hops away. Age and Occupation tie for

being closest to the query cell; the apex is ignored. The average of the Age and Occupation

cells is then the answer to the (Age, Occupation) query.

Apex

Occupation Age

Age, Occupation
Query cuboid

Figure 4.5: (Age, Occupation) query

4.4 Performance Evaluations

This section shows various evaluations of the sampling cube shell with real world data.

Everything is implemented in C++ and compiled with GCC. Experiments were performed

on a Linux machine with an Intel Pentium4 2.4GHz CPU and 2GB of memory.

Real sampling data from a Fortune 100 company was obtained for the tests. For confi-

dentiality reasons, the name of the company, the names of products, or actual values cannot

be revealed. The data contains over 750,000 samples and nearly 600 dimensions. Each sam-

ple is a record of a sale of a particular product to a single customer. The customer is then

surveyed on various dimensions such as age, marital status, employment status, education

level, etc.

Two subsets are extracted from the full data. One is a 21-dimensional dataset with the

59

number of children (under age 16) as the cube value. The other is a 22-dimensional dataset

with the household income as the cube value. In the original input data, income was already

binned into 12 ranges. In testing, a random income value within the range is generated. As

a result, some of the subtle patterns might have been lost but the big correlations should

still hold.

In all tests, shell size indicates the size of the sampling cube shell (i.e., number of

cuboids). It is the halting criterion for shell construction. Unless mentioned differently,

minsup and minsd are both set to 0.

4.4.1 Shell Construction Efficiency

As mentioned previously, materializing the full sampling cube is often unrealistic in real world

scenarios. It is known to be exponential in the number of dimensions. But what about the

sampling cube shell? Figure 4.6 shows the time to compute cube shells of shell size 20

and 50 as dimensionality increases from 5 to 20. For comparison, the full data cube (as

computed by BUC [9]) is also shown. As expected, BUC explodes when the number of

dimensions reaches higher than 15. In comparison, the cube shells grow linearly. This is not

surprising because the time is constrained by shell size. The reason the time does increase;

however, is because the number of candidates to be examined increases as the number of

dimensions does. For example, with the number of dimensions at 19 and shell size at 50,

the total number of candidates generated is 778. This is far smaller than the full cube (215)

but it is also much larger than shell size.

Next, efficiency with respect to the number of tuples in the input relation is checked.

In traditional OLAP, this usually has a linear relationship to running time due to a linear

increase in the number of overall cells. Figure 4.7 shows that this is also the case with

the sampling cube shell. As the number of tuples increases from 20,000 to 100,000 in a 22

dimensional data set, the time to compute a cube shell (regardless of shell size) is linear to

60

 2000

 1500

 1000

 500

 20 15 10 5

R
un

ni
ng

 T
im

e
(s

)

Number of Dimensions

BUC
Cube Shell: shell_size=20
Cube Shell: shell_size=50

Figure 4.6: Materialization time vs. dimensionality

the size of the input.

 700

 600

 500

 400

 300

 200

 100

 100 80 60 40 20

R
un

ni
ng

 T
im

e
(s

)

Number of Input Tuples (1000s)

Cube Shell: shell_size=10
Cube Shell: shell_size=20

Figure 4.7: Materialization time vs. number of tuples

4.4.2 Query Effectiveness

Experiments in this section will address the two major claims on the effectiveness of the

proposed framework. First, they will show that query expansion increases the reliability of

the query answer. Second, they will show that query processing with the sampling cube shell

produces negligible errors while reducing the space requirement significantly.

Query Expansion

To test the effectiveness of query expansion, the full input data of 750,000 tuples is taken to

be the population and a random sample is taken from it. A full sampling cube is constructed

61

on the sample, and query results are compared to the population in order to measure the

accuracy.

In the first experiment, a sampling cube measuring the average Number of Children

is built from a random 0.1% sample of the full input. Three dimensional point queries

consisting of the Gender, Marital, and Age dimensions are given to the (1) full data, (2)

sampling cube without query expansion, and (3) sampling cube with query expansion. The

age dimension is allowed to expand to at most ± 2 years of the query age. The output below

shows a sample query for Gender = Female, Marital = Married and Age = 36.
> q GENDER FEMALE MARITAL MARRIED AGE 36

Population: 1.66 from 4783 points

Sample w/o expansion: 2.33 +/- 1.12 from 6 samples

Sample w/ expansion: 1.51 +/- 0.34 from 47 samples

Difference in mean w/o expansion: 0.67

Difference in mean w/ expansion: 0.15

As the output shows, 1.66 is the “correct” answer from (1). 2.33 ± 1.12 is the answer

from (2) and 1.51 ± 0.34 is the answer from (3). Here, query expansion results in a significant

improvement in the query answer. 1.51 is much closer to 1.66 than 2.33. The sample size

also increases from 6 to 47, which reduces the 95% confidence interval.

Table 4.3(a) shows the full effect of intra-cuboid expansion in the Age dimension over

many queries, similar to the above example. The first two columns of each line show the

query values of the Gender and Marital dimensions. In each line, the Age dimension is

enumerated over all possible values (approximately 80 distinct values), and each combination

forms a distinct 3 dimensional point query in the sampling cube. The third and fourth

columns show the average absolute error in the query results of the sampling cube without

and with query expansion. As the fourth and fifth columns show, turning on intra-cuboid

query expansion in the Age dimension improves the accuracy significantly. The last row in

62

the table shows an average of 26% improvement from nearly 500 different queries. The last

three columns in the table show the effect of query expansion on sampling size. Without

expansion, the number of samples per query is only 1.4. With expansion, it increases to

13.4.

Table 4.3(b) shows a similar experiment with the Age dimension and the average Household

Income as the cube measure. In this experiment, 0.05% of the input data is loaded into the

sampling cube, and the age dimension is again allowed to expand ± 2 years from the query

age. The two dimensions queried in addition to Age are Gender and Education. The result

of this experiment is similar to the last one. In the nearly 650 queries executed, the average

error reduction from no expansion to intra-cuboid expansion is 51%. Average sampling size

also increases significantly.

Lastly, Table 4.3(c) shows another experiment. In this one, the average Household

Income is still the cube measure. But the expansion is now within the Number of Children

dimension, which is allowed to expand to ± 1 child. Three other dimensions were specified

in the query, namely Gender, Marital, and Education. Due to limited space, only the

final average is shown in Table 4.3(c). Again, both query accuracy and sampling size are

improved. The experiment also shows the average reduction in the size of the confidence

interval as a result of query expansion. With more sampling points, it is easy to see why the

interval size would decrease. This, in addition to the reduction in the mean’s error, improves

the overall quality of the query results.

Sampling Cube Shell

Next, the query accuracy of the sampling cube shell is measured. The same query is given to

the sampling cube shell and the full sampling cube, and the difference between the answers

is the “error.” The full sampling cube is simulated by scanning the input relation repeatedly

since it was not possible to full materialize it.

63

First, a sanity check is performed by looking at the cuboids chosen by the cube shell

according to CSD and CSDR. In the dataset measuring the number of children, the Age, Age

Cohort, and Generation cuboids are chosen as the first three. Intuitively, these checkout to

be sensible choices.

Figure 4.8 show the effect of shell size on query accuracy using the dataset of average

household income. 1000 random queries ranging anywhere from 1D to 5D were processed

both by the sampling cube and the sampling cube shell. The absolute percent error is shown,

which is defined as (|query answer from the shell cube − query answer from full cube|) ÷

query answer from the full cube.

 30

 20

 10

 0
 100 90 80 70 60 50 40 30 20 10 0

A
ve

ra
ge

 %
 E

rr
or

 o
ve

r
10

00
 Q

ue
rie

s

Shell_Size

All Ancestor(s) Avg
Nearest Ancestor(s) Avg

Nearest Ancestor(s) Weighted Avg

Figure 4.8: Query accuracy vs. shell size for average household income dataset

In Figure 4.8, there are three curves. They show different methods of calculating the

superset queries mentioned in Section 4.3.2. In “All Ancestor(s) Avg,” the answer at the

query cell is computed by taking the average of all ancestors in the cuboid lattice. In

“Nearest Ancestor(s) Avg,” the answer is computed by taking the average of the nearest

ancestors in the cuboid lattice. And lastly, in “Weighted Nearest Ancestor(s) Avg,” the

answer is computed by taking the average of the nearest ancestors inversely weighted by

the size of the sampling set. As all three curves show, as shell size increases, the error

decreases. This is expected because there are more cuboids in the shell to accurately answer

queries. Amongst the three curves, “All Ancestor(s)” gives the largest amount of error while

“Nearest Ancestor(s) Avg” gives the least. “Weighted Nearest Ancestor(s) Avg” is close

64

but just slightly worse. The reason is that most of the time, there was only one nearest

ancestor; thus the method of averaging only had a small effect.

Clearly, there is a tradeoff between storage space requirement and query processing qual-

ity. But considering that the full sampling cube size contains 222 cuboids, a sampling cube

shell with shell size set to 100 uses less than 0.01% of the space required while producing

less than 1% error. Even if one does not compute the full sampling cube and materializes

only 5D or smaller cuboids, a sampling cube shell with shell size set to 100 still uses less

than 1% (100/35,442) of the space required.

Figure 4.9 shows an experiment testing the effect of a query’s dimensionality on the error

of the cube shell. The average household income dataset is used with shell size fixed at 50.

As expected, as the query drills further down into the data cube, the error increases. This is

because the query cells are further away from the boundaries of the cube shell. As a result,

the error in the parent cells’ approximation of the answer increases. But most OLAP queries

will not drill down very far. In most real world situations, the analyst will only specify 1D

to 5D queries. In these cases, the average error is very low (< 5%) while using less than

0.01% of the space required by the full sampling cube.

 20

 10

 0
 10 9 8 7 6 5 4 3 2 1

A
ve

ra
ge

 %
 E

rr
or

 o
ve

r
10

00
 Q

ue
rie

s

Number of Queried Dimensions

All Ancestor(s) Avg
Nearest Ancestor(s) Avg

Nearest Ancestor(s) Weighted Avg

Figure 4.9: Query accuracy vs. query dimensionality for average household income dataset

65

Input: (1) Input table R; (2) minsup; (3) minsd

Output: Sampling cube shell S

Method:

1. Candidates = {apex cuboid of R}
2. while Candidates 6= ∅ or halting criteria not met
3. B = cuboid in Candidates with largest CSDR
4. remove B from Candidates

5. add B to S

6. add B’s descendant cuboids to Candidates

7. update CSD values in Candidates

8. return S

66

Table 4.3: Query expansion experimental results

(a) Intra-Cuboid Expansion with Age dimension and Average Number of Children cube measure

Query Average Query Answer Error Sampling Sizes
Gender Marital No Expand Expand % Imp. Population Sample Exp.

FEMALE MARRIED 0.48 0.32 33% 2473.0 2.2 28.3
FEMALE SINGLE 0.31 0.21 30% 612.6 0.6 6.4
FEMALE DIVORCED 0.49 0.43 11% 321.1 0.3 3.4
MALE MARRIED 0.42 0.21 49% 4296.8 4.4 37.6
MALE SINGLE 0.26 0.21 16% 571.8 0.5 3.6
MALE DIVORCED 0.33 0.27 19% 224.7 0.2 1.2

Average 0.38 0.27 26% 1416.7 1.4 13.4

(b) Intra-Cuboid Expansion with Age dimension and Average Household Income cube measure

Query Average Query Answer Error Sampling Sizes
Gender Education No Expand Expand % Imp. Pop. Sample Exp.

FEMALE HIGH SCHOOL $55622 $31580 43% 641.4 0.3 3.9
FEMALE SOME COLLEGE $61526 $28822 53% 980.0 0.5 4.5
FEMALE COLLEGE $73309 $14504 80% 1132.8 0.5 6.8
FEMALE POSTGRADUATE $88658 $57907 34% 689.6 0.3 2.2
MALE HIGH SCHOOL $55671 $23503 57% 857.0 0.4 2.6
MALE SOME COLLEGE $63821 $34944 45% 1219.0 0.6 4.4
MALE COLLEGE $71120 $28913 59% 1511.0 0.9 7.4
MALE POSTGRADUATE $103619 $61191 40% 1191.8 0.6 4.2

Average $71668 $35170 51% 1027.8 0.5 4.5

(c) Intra-Cuboid Expansion with Number of Children dimension and Average Household Income cube measure

Average Query Answer Error Sampling Sizes
No Expand Expand % Improve CI Reduce Population Sample Expanded

Average $60873 $32458 51% 18% 713.9 3.6 12.3

67

Chapter 5

Moving Object Outliers

The previous chapter focused on abnormal behavior in the traffic of a road network. This

chapter will focus on abnormal behavior in the individual moving objects. This was the basis

for some of our recent work [49, 50]. Though outlier detection has been studied in many

contexts [5, 38], the moving objects domain poses unique challenges. Some have tried to

tackle this problem [54, 42]. However, they focus almost exclusively on the trajectories. In

practice, trajectories are associated with non-spatiotemporal features and such associations

are often more valuable for analysis. Imagine a group of objects having similar trajectories

on record, but one of them does it in the middle of the night while the others occur during

the day. The time-of-the-day feature would be helpful here for analysis. Additional in-

formation such as speed and object type play equally important roles. Further, anomalies

may occur at arbitrary levels of abstraction and be associated with different time and loca-

tion granularities. A speedboat may require analysis at the minute level while a freighter

may only require the hour level. Hence, a systematic analysis of outliers must take into

consideration of multiple features associated with different dimensions in each movement.

In addition, the treatment of trajectories have to be adjusted for the purpose of anomaly

detection. Prior work in the area of trajectory prediction [54, 42] use Markov models or other

sequential models to model a single trajectory and predict its future behavior. However, when

used in the context of a large population with many different distributions, such approaches

may not be effective.

There are in general two mechanisms for anomaly detection: classification, which relies

68

on labeled training data sets, and clustering, which performs automated grouping without

the aid of training data. Although both are interesting methods for mining moving object

outliers, classification often leads to stronger mining results with the help of training data.

Therefore, our focus will be on constructing a classification model.

The problem of anomaly detection in moving object data is defined as follows. The input

data is a set of labeled trajectories: D = {(t1, c1), (t2, c2), . . .}, where ti is a trajectory

and ci is the associated class label. A trajectory1 is a sequence of spatiotemporal records

of a moving object, e.g., GPS records. Each record has the geographic location as well as

a timestamp, and records can be made at arbitrary time intervals. The set of possible

class labels is C = {c1, c2, . . .}. In simple anomaly detection, there could just be two classes:

cnormal and cabnormal.

The goal of the problem is to learn a function f which maps trajectories to class labels:

f(t) → c ∈ C. f should be consistent with D as well as future trajectories not in D. In

other words, we want to learn a model which can classify trajectories as being normal or

abnormal.

In [50], we propose a framework, called ROAM (Rule- and Motif-based Anomaly Detection

in Moving Objects), for the problem of anomaly detection. Compared to related work in

classification or clustering of moving objects, ROAM incorporates a fuller feature space and

examines more than just trajectories. At a high level, ROAM presents three novel features.

1. Motif-based feature space: Instead of modeling whole trajectories, we partition them

into fragments (motifs) and construct a multi-dimensional feature space oriented on the

motifs with associated attributes.

2. Automated hierarchy extraction: By examining the patterns in the trajectories, we

automatically derive hierarchies in the feature space. This yields a multi-resolution view

1Trajectory in this paper is just data and does not imply path prediction.

69

of the data.

3. Hierarchical rule-based classifier: We develop a rule-based classifier which explores

the hierarchical feature space and finds the effective regions for classification.

5.1 Key Insights

There have been some prior work in the area of trajectory prediction [54, 42]. Markov models

or other sequential models can model a single trajectory and predict its future behavior.

However, when used in the context of a large population with many different distributions,

such approaches may not be effective.

Example 10 Consider the two trajectories in Fig. 5.1(a). They have similar shapes except

the one on the right has an extra loop. The impact of this additional loop depends on the

task, but one would remark that the other portions are remarkably similar.

This example presents some problems for holistic models. It is difficult to represent the

semantics of “mostly the same with the exception of an extra loop” using distance metrics

between models. Local differences could either dominate the metric or be drowned out by

the rest of trajectory. Furthermore, it is difficult to capture thousands or tens of thousands of

trajectories in a single model. While a single object or a small set may have clear patterns, a

large population (such as in real-world anomaly detection) presents a wide range of patterns

across all granularities of time and space signals.

5.1.1 Motif-based Feature Space

In this paper, we propose that semantic analysis should be based on a rich feature space

constructed using trajectory fragments. In ROAM, raw trajectories are partitioned into

fragments. These fragments are overlaid on top of each other and the common patterns

70

(a) Two similar trajectories. The loop in the
right trajectory is difficult to handle in holistic
approaches.

4m4m

4m
4m

m1
m2

m2

(b) Same two trajectories after motif extraction.
The right trajectory has an extra m1.

Figure 5.1: Motif representation

become what we call motifs. Motifs are represented by a tuple (motif expression) which

includes additional spatiotemporal attributes that may be helpful in analysis. The set of

motif expressions observed then forms a feature space in which the original trajectories are

placed. Using such a feature space, we can leverage algorithms in machine learning and data

mining to learn complex associations between trajectory fragments and also other important

information.

A motif is a prototypical movement pattern. Examples include right turn, u-turn, and

loop. One could view them as parallels to gene expressions in DNA sequences or entity

mentions in text. Fig. 5.1(b) shows the motifs in Fig. 5.1(a) as drawn by the dotted circles.

In this form, the two trajectories now have much in common: They share one m2 and two

m4’s, and differ in one m1 (i.e., loop motif).

71

5.1.2 Multi-Resolution Feature Hierarchies

Another observation we make is raw recordings and semantic analysis often occur at different

spatiotemporal granularities. While time recordings may be made at the minute or second

level, analysis is usually more sensible on the hour level or even higher. The same scenario

applies to the location measure. One might record at the meter level but analyze at the city

block or district level.

By using a more general representation, fewer distinct measure values are used and the

analysis task could become easier. In addition, it would improve human readability. If the

final classification model produces human readable results (as ROAM does), having high level

features not only reduces the size of the results but also increases their understandability.

Sometimes, these hierarchies are readily available, as in the case of time. With other

features, however, it may not be obvious. In ROAM, we use a clustering-based technique

to automatically extract hierarchies based on the behavior of the trajectories. Given such

hierarchies, it is still hard to know a priori which levels will work the best for classification

so we let ROAM adjust dynamically.

5.2 Framework

Figure 5.2 shows the ROAM (Rule- and Motif-based Anomaly Detection of Moving Objects)

framework. Square boxes are computation modules, round boxes are data sources, and ar-

rows show the flow of data. There are three computation modules in ROAM: Motif Extractor,

Feature Generator, and Hierarchical Rule-based Classifier. Data flows through them in that

sequence.

72

Rule−based Classifier
Hierarchical

Object Traces

Motif Extractor

Feature Generator Concept Hierarchies

Pre−Defined Motifs

Abnormal Traces

Figure 5.2: ROAM Framework

5.2.1 Motif Extractor

The first computation module in ROAM is the Motif Extractor. A motif is a prototypi-

cal movement pattern. ROAM use a sliding window technique to process the trajectories.

All windows are overlaid on top of each other and clustering is used to group them into

representative sets. These representative ones then form the set of interesting motifs in D.

Given a trajectory, we slide a window of length ω across it. ω could be defined with

respect to time or distance. If it is time, then different speeds (and thus distance traveled)

would result in different motifs. If it is distance, then speed variances would be normalized.

In our experiments, we used time since speed was relatively stable though more complex

data might require more complex normalization methods. For each resultant window w, we

compute the vector from the first point in w to the last point in w. The width of the vector

is then expanded to accommodate all other points within w; this bounding box allow us to

smooth over noises in the trajectory.

All bounding boxes are overlaid on top of each other. And using the Euclidean distance,

we cluster them to find the representative patterns. The resultant cluster centers then define

the set of motifs. In ROAM, a motif is represented just like a window: a vector with a

bounding box around it. Depending on the task, other variables may be kept as well. Once

73

the motifs are set, we then go through D again using the same sliding windows. This time,

a window w in a trajectory is similar to a motif m if ||w − m|| ≤ ǫ. And if a particular

window is similar to a motif, we say that motif is “expressed” in the trajectory.

A natural question to raise is how to set ω. A too small of a value could miss motifs by

dividing them into indistinguishable pieces and a too large of a value could bundle motifs

together and lose discriminative power. Fortunately, it turns out that most reasonable values

will perform just fine. As we will show empirically in Section 4.4, classification accuracy is

fairly robust with regards to different ω values.

Given a trajectory, the motif extractor returns the sequence of motif expressions found

in the trajectory. Each motif expression has the form

(mi, tstart, tend, lstart, lend) (5.1)

where mi is the motif, tstart and tend are the starting and ending times, and lstart and lend are

the starting and ending locations. The complete sequence is known as the motif trajectory

of the original trajectory.

Motif Expression Attributes

The form of motif expression shown in Eq. (5.1) is only the first step in full motif expression

extraction. Additional information on when, where, and how the motif was expressed is

needed. Take Fig. 5.3 as an example. There are two objects moving in an area with the

same trajectories; however, the left one is near an important landmark. This extra piece of

information (i.e., proximity to landmark) can be crucial in decision making. If we also knew

that the left object was moving slowly during the middle of the night, the combination of

all such information is telling in anomaly detection.

For each motif expression, we introduce a set of attributes in addition to the simple time

74

landmark

Figure 5.3: Two objects moving with the same trajectory.

and location ones in Eq. (5.1). Some examples include duration, top speed, avg speed,

radius, and general location. Some of these attributes can be derived easily from the time

and location attributes, e.g., avg speed = path-distance(lstart, lend) ÷ (tend − tstart). Others

may require a more sophisticated motif extractor.

Let there be A such attributes: {a1, a2, . . . , aA}. We now represent each motif expression

as follows,

(mi, v1, v2, . . . , vA) (5.2)

where mi is the motif and vi is the value of attribute ai. Note that ai may be continuous or

even multi-dimensional.

5.2.2 Feature Generator

Once the motif expressions have been extracted, semantic analysis can begin. One could

try the following näıve classification scheme. For each distinct (motif, attribute, attribute

value) combination we see in the trajectory data, we map it to a feature. For example,

(right-turn, speed, 11mph) would map to a feature and (right-turn, speed, 12mph) would

map to another feature. Formally, ∀ i, j, k (mi, aj, vk) ↔ fx ∈ F where F is the resulting

feature space. We then use the following classifier.

This particular transformation from trajectories to a feature space is complete. Every

motif attribute value is preserved as a feature and the frequencies of their expressions are

preserved as the feature values. However, it is ineffective by the following observations. First,

75

1. Transform the motif-trajectories into vectors in the F
feature space. Suppose fx ↔ (mi, aj, vk).
Then the xth component of the vector
has the value of the number of times
motif i’s attribute j expressed value k in the trajectory.

2. Feed the feature space and the data points as
input into a learning machine.

a large number of distinct motif attribute values leads directly to a high dimensional feature

space. Specifically, suppose there are M motifs, A attributes, and each attribute has V

distinct possible values. The instance space is then N
MAV . Second, the high granularity or

continuous motif attribute values make generalization difficult. Because these distinct values

are transformed to distinct features, generalization becomes essentially impossible. Learning

on a feature that is at 10:31am will have no bearing on a feature that is at 10:32am.

Feature Generalization

In order to overcome the difficulties in the Flat-Classifier, generalization in the fea-

ture space is needed. For example, (right-turn, time, 2am), (right-turn, time, 3am), and

(right-turn, time, 4am) features could be generalized into one feature: (right-turn, time,

early morning). This not only reduces the dimensionality of the feature space but also

helps the learning machine through feature extraction.

Recall that each feature has the form (mi, aj, vk), where each attribute aj is either nu-

merical (1D) or spatiotemporal (2D or 3D). We assume that each aj has a distance metric

defined on its values. Thus, features having the same mi and aj values (i.e., (mi, aj, ∗)) can

be compared with a formal distance metric. For example, (right-turn, time, 2am) is more

similar to (right-turn, time, 2 : 02am) than (right-turn, text, 6pm). But, it does not make

sense to compare features with different mi or aj values (e.g., (right-turn, time, 2am) is not

comparable to (u-turn, speed, 10mph)).

76

We partition the features in F into sets with distinct (mi, aj) values. If there are M

motifs and A attributes, there are M×A disjoint sets. We propose to generalize the features

in each (mi, aj) set into a smaller set. Further, this new set will be hierarchical where

appropriate. This will be the task of the Feature Generator in the ROAM framework.

Specifically, it will

1. discretize or cluster continuous or high granularity motif attribute values.

2. form a hierarchy over the attribute values, which in turn offers a multi-resolution view of

the data.

We will treat each (mi, aj) space independently. Since the attribute values can have

different forms (e.g., numerical values, 2D spatial locations), we will use different methods

where appropriate. We explain them in detail in the following two sections.

Spatial Attributes

Attributes such as location are spatial points in a 2D or 3D space. In such scenarios, we use

a hierarchical “micro-clustering” technique similar to BIRCH [92] to discover prototypical

patterns. Features are inserted into a tree-based data structure where nodes represent micro-

clusters. A micro-cluster is a small, tightly grouped neighborhood, and features belong to

the same micro-cluster only when they are closely related. A tree of these micro-clusters

represents a concept hierarchy of the attribute.

Take the location attribute as an example. A micro-cluster may only include features

which are within a few meters of each other. During insertion of features into the tree, each

micro-cluster has a maximum radius parameter. If a feature cannot fit inside a micro-cluster,

a new micro-cluster is created. The tree also had a maximum branching factor so insertions

and rotations occur like a typical B-tree. After all features have been inserted into the tree,

the leaf nodes form the set of micro-clusters. Each micro-cluster can be viewed as a meta

77

data point that represents similar features. We then feed the set of micro-clusters into a

hierarchical agglomerative clustering algorithm to construct the final hierarchy.

The final clustering tree is hierarchical in the following sense: any node in the tree

contains summarized information for all data points in that node’s subtree. For example,

the root contains a summary of the entire tree. The summary information is sufficient for the

calculation of the centroid and the radius of the points. The reason we choose a BIRCH-like

algorithm in our system is two-fold. First, it performs micro-clustering, which fits our needs

better. Second, building the CF tree is time and space efficient (O(n)). More properties are

described in [92].

Numerical Attributes

Attributes such as time and avg speed are numerical. Usually, in the presence of continuous

attributes, discretization is performed. Doing so has many advantages. First, it makes the

learning problem easier. A decision tree, for example, would have fewer splits to consider. A

discrete feature allows better generalization. Second, it makes human readability easier. For

instance, it is much easier to understand the feature value of 1pm-2pm as opposed to reading

all the distinct values between 1pm and 2pm.

Discretization techniques [56] can be split into two main groups: unsupervised and super-

vised. Since we have labeled data, supervised algorithms are more appropriate. There is an

abundant number of methods available for this; most of them would function just fine here.

An additional requirement we have is a hierarchy over the resultant discrete values. While

most discretization methods do not have this property, we can easily add it by performing

hierarchical agglomerative clustering as a post-processing step.

Since spatial attributes are a generalization of numerical attributes, we use the same

clustering methods in our implementation of ROAM for both types of attributes. Clustering

in one-dimensional data still provides meaningful groupings based on behavior.

78

Multi-Resolution View

fast

all

6−10mph

...

slow

1−5mph

(right−turn, speed)

afternoon

all

8am−12pm2−8am

morning

...

(right−turn, time)

Figure 5.4: Two sample motif-attribute hierarchies

After building hierarchies in each of the (mi, aj) spaces, the overall feature space is now

structured as a set of hierarchies. Fig. 5.4 shows a partial illustration. In it, there are

two motif-attribute hierarchies: (right-turn, time) and (right-turn, speed). Each node

corresponds to a micro-cluster feature discovered in F . For example, the black node in Fig.

5.4 represents all right-turns taken between 2 and 8am. High level nodes in the hierarchies

correspond to high level features and low level nodes correspond to low level features. By

choosing different subsets of the nodes, a user can create distinctly different views of the

data. For example, suppose one only used level one features in Fig. 5.4 (i.e., “morning”,

“slow”, etc). This generates a very rough view of the data and with only four features. On

the other hand, choosing the leaf nodes in Fig. 5.4 generates a detailed view but with many

more features.

As mentioned previously, concept hierarchies may already exist for some attributes (e.g.,

time). In such cases, one may just choose to use them to construct the motif-attribute

hierarchy. However, in other cases or sometimes in place of the existing hierarchies, one

could use automated techniques in ROAM to construct the hierarchies. This has the distinct

advantage that the hierarchies are built based on the behavior of the data. As a result, more

features could be dedicated to the dense regions and fewer features to the sparse regions.

Clustering and discretization techniques can adjust dynamically based on the data and could

facilitate more effective analysis.

79

5.2.3 Classification

Let F ′ be the set of all nodes in the motif-attribute hierarchies. F ′ is the largest feature space

where all resolutions are included. Though this feature space is “complete”, it is unlikely

to be the best one for classification. It creates a high dimensional feature space; this makes

learning slow and possibly ineffective. On the other hand, suppose we choose only the root

level nodes in all the motif-attribute hierarchies. That is, only the “all” nodes in Fig. 5.4.

The problem with this feature space is that the features are too general to be useful. What

we seek is something in between those two extremes.

To this end, we propose a rule-based classification method: CHIP (Classification using

Hierarchical Prediction Rules). We chose a rule-based learning algorithm for several reasons.

First and foremost, it produces human-readable results. This is useful in practice. Second,

it is efficient. CHIP is O(N) with respect to either the number of examples or the number

of features. Other classifiers such as Näıve Bayes or SVM are O(N2) with respect to one.

The problems we are dealing could be large and high dimensional. Lastly, the classification

problem is unbalanced: the abnormal class has few training examples. In such contexts,

rule-based learner have been shown to be effective [18].

Intuitions

Before formally describing CHIP, we give some intuitions. CHIP iteratively and greedily

searches for the best available rule until all positive examples are covered. In addition,

CHIP tries to use high-level features whenever possible. For example, suppose all ships that

move at location X between the hours of 12pm and 5pm are normal. Then a single rule

using the afternoon feature will suffice. Using this principle has several benefits. First,

the feature space is kept to a small size. This speeds up learning and keeps the problem

tractable. Second, features are kept high level whenever possible. This produces rules which

are general and easily understood by a human. Third, it avoids the problem of over-fitting.

80

In machine learning research, the study of feature space simplification or generalization

is known as feature selection [26]. Given a set features, choose a subset which will perform

better (in terms of efficiency and/or accuracy) in the learning task. A typical approach

scores each feature and iteratively inserts or removes them. In our setting, however, we have

something that is different than the standard setting: there are hierarchical structures over

the features. Thus, selection should be a little smarter.

With this in mind, we propose a top-down search in the feature hierarchies. We start

with an initial high level feature space and try to describe the data (in the rules sense). If

these features produce accurate rules, we are satisfied. But if at some point we find that

a more specific feature will produce a better rule, we expand the existing feature space to

include that specific feature. This process repeats until all the training data is sufficiently

covered.

CHIP

We introduce some definitions first. CHIP learns a set of rules, much like FOIL [65] and CPAR

[85]. A single rule r has the conjunctive form of:

l1 ∧ l2 ∧ . . . ∧ ln → c

where each li is a literal (or predicate) of the form (feature = value) and c is the class label.

An example is “covered” by r if all the literals in r are satisfied in the example. Next, recall

that F ′ is the complete set of features. For any feature f in F ′, let Exp(f) return the set of

f ’s children in F ′’s hierarchy. For example, Exp(morning) = {2-8am, 8am-12pm}. At any

time, CHIP uses a subset of the features in F ′. Let FC be this set.

A rule is learned one literal at a time. Literals are selected according to a weighted

version of Foil Gain [65], which is based on the positive and negative coverage of the rule

81

before and after adding the literal. Let p0 and n0 be the number of positive and negative

examples covered by rule r without literal l. Let p1 and n1 be the number of positive and

negative examples covered by rule r ∧ l. Foil Gain(l, r) is then defined as

p1

(

log2

p1

p1 + n1

− log2

p0

p0 + n0

)

The weighted version of Foil Gain [85] allows previously covered positive examples to be

used again but just weighs them down. This adjusts the p and n values appropriately in the

above equation.

In the previous section, we gave the intuitive notion of discovering that a more specific

feature will perform better than a current feature. Here, we formalize this notion in the

function Exp Gain(f, r) where f is a feature and r is a rule. It is defined as

Exp Gain(f, r) = max
(l,fi)∀l,fi∈Exp(f)

Foil Gain(l, r)

The Exp Gain (expansion gain) of a feature is the maximum Foil Gain achieved by any

literal in any of its child features. It is defined with respect to a non-empty rule similar to

Foil Gain. We chose this function because it allows sensible direct numerical comparisons

between Foil Gain and Exp Gain.

Discussion CHIP starts with all examples uncovered and iteratively searches for the best

rule to cover the positive examples. The search is greedy and halts when enough positive

examples are covered. Rules are learned one literal at a time, choosing them based on

Foil Gain (line 4). In line 5, the Exp Gain of each feature is calculated. If the better gain

is Foil Gain, the literal is added to the current rule (line 8). Otherwise, the feature space

is expanded (line 10) and the process repeats.

82

Complexity CHIP has running time of O(nSR) where n is the number of examples, S is the

size of the used feature space, and R is the number of learned rules. In our implementation,

we collapsed examples (trajectories) which appear the same into meta-examples. Thus, with

a high initial feature space, n can be quite small if the data is skewed. S can also be small

initially since there are only a few high level features. As the algorithm executes, both n and

S will increase with feature expansion. This is another reason to avoid careless expansion.

5.3 Experiments

In this section, we show our framework’s performance in a variety of settings. We conduct

our experiments using both real and generated data to show efficiency and effectiveness.

For data generation, we used GSTD [78] (which generates raw trajectories) and also our

own data generator (which generates motif-trajectories). The latter allows us to test some

parts of the framework independently of others. Efficiency experiments were run on an Intel

Pentium 4 2.6GHz machine with 1.5GB of memory. The Motif Extractor was written in

Python and the rest was written in C++ and compiled with GCC.

Each dataset consists of two classes: normal and abnormal. In GSTD, we achieve this by

generating two datasets with slightly different parameters. In our own generator, the base

data is motif-trajectories. A set of motif-expression seeds are initialized in the model and a

Gaussian mixture model is used to create randomness. We generate the abnormal class by

mixing “abnormal” motifs with a background model that is shared between both the normal

and abnormal classes.

There are two parameters which controls CHIP. One is the starting level in the motif-

attribute hierarchy. Level 0 denotes the root level. The other is β, the feature expansion

weight. These two parameters are indicated as ROAM(starting level, β). Finally, since the

number of abnormal examples is small, we used the standard F1 metric instead of accuracy.

83

F12 is a harmonic mean of recall and precision and better reflects the effectiveness of the

classifier. An F1 score of 100 indicates 100% recall and precision. F1 scores were the result

of 10-fold cross validation. Experiments were run 5 times to get an average.

5.3.1 Real Data

We obtained real ship navigational data from the Monterey Bay Aquarium Research Institute

(MBARI3). Under the MUSE project, several ships traveled in ocean waters near Northern

California to conduct various aquatic experiments. The ships’ navigational data, which

includes time, longitude, and latitude, were recorded. Depending on the ship, the sampling

rate varied from 10 seconds to a few minutes; the end result are fairly continuous paths.

Figure 5.5 shows a typical path of a vessel named Point Sur.

 0

 1

 2

 3

 4

 5

 6

 7

-0.05 0 0.05 0.1 0.15 0.2 0.25

K
m

Km

Figure 5.5: Path of ship Point Sur from 16:00 to 24:00 on 8/23/00 starting at point (0, 0).

We collected data from two different ships (namely Point Sur and Los Lobos) and assigned

different class labels to them. The two ships carried out different tasks and thus naturally

had different movement patterns. There was a total of 23 paths (11 of one, 12 of another),

each with 1500 to 4000 points. Using ROAM, we extracted 40 motifs, constructed features,

2F1 = (2× recall × precision)÷ (recall + precision)
3http://www.mbari.org/MUSE/platforms/ships.htm

84

and tried to recover the class labels using CHIP. Figure 5.6 shows two sets of trajectory

segments that were marked as motifs 10 and 14. Motif 10 is a simple straight trajectory

towards the northeastern corner. Motif 14 is a 3-part move of going north, northwest, and

then north again.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Extracted motif 10

-45 -40 -35 -30 -25 -20 -15 -10 -5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Extracted motif 14

Figure 5.6: Extracted motifs from MBARI data.

Motifs were extracted from a window of approximately 3 minutes, and had two additional

attributes. One is the distance traveled, which indicates speed, and the other is the general

Euclidean distance to the stored motif. We did not include the time-of-day attribute since the

two ships had regular but different schedules and including them would make the problem too

easy. Motif-attribute hierarchies (branching factor of 4) were also generated, which ranged

from 2 levels deep to 7 levels deep.

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

F
1

M
ea

su
re

Window Size (minutes)

ROAM(1,0)

Figure 5.7: Effect of ω on classification accuracy.

An issue raised before was the setting of ω, the width of the window to extract motifs.

85

Figure 5.7 shows the effect on classification as ω increases from 4 minutes to 60 minutes on

the MBARI data. As shown, accuracy with too small or too large of a window is poor, but

in the intermediate, it is relatively stable. Thus, we believe that as long as the window is

reasonable, performance should not be affected too much. Another issue is how many motifs

to extract. This was set to 40 in Figure 5.7, and Figure 5.8 shows the effect as that number

changes from 5 to 60. The curve shows that we were able to achieve 100% classification

accuracy with 10 and 15 motifs. And as the number increases, accuracy decreases but not

too drastically. In general, a reasonable number should not be too difficult to find.

 70

 75

 80

 85

 90

 95

 100

 105

 0 10 20 30 40 50 60

F
1

M
ea

su
re

Number of Motifs

ROAM(1,0)

Figure 5.8: Effect of number of motifs on classification accuracy.

5.3.2 Synthetic Data

While the real data experiments provided some validation of our methods, we were unable to

thoroughly test other aspects due to the small dataset size. To combat this, we experimented

with synthetic data from GSTD and also our own data generator.

Notation

For our own data generator, we use the following notation to denote the parameters used

in generation. Each data set’s name is in the form of “N#B#M#A#S#L#”, where N is

the number of normal trajectories, B is the number of abnormal ones, M is the number of

86

motifs, A is the number of attributes, S is the standard deviation in the Gaussian mixture

distributions, and L is the average length of the trajectory.

Classification Accuracy

First, we tested accuracy using GSTD. In GSTD, we generate two different classes of data

using Gaussian distributed movement centers. The two models shared the same parameters

except the mean of the centers differed by 0.01 (0.50 vs. 0.51). Fig. 5.9 shows the results

as we also varied the variance in the distributions. As expected, accuracy improves as the

trajectories differ more from each other. But even at small differences, ROAM was able to

distinguish the two classes.

 100

 95

 90

 85

 80

 75
 0.25 0.2 0.15 0.1 0.05

F
1

M
ea

su
re

Difference in Variance

ROAM(1,0.0)
ROAM(2,0.0)
ROAM(2,0.4)

Figure 5.9: GSTD N2000B200M30: Accuracy with respect to difference in variance.

Next, we tested the accuracy using our own data generator. Fig. 5.10 shows F1 results

as the number of motifs in the data increased from 10 to 100 on the y-axis. For comparison,

we used SVM4 (nu-SVC with radial kernel) with the Flat-Classifier as described before and

also SVM with level 2 features. The first thing we notice is that SVM with Flat-Classifier

is hopeless, as expected. We also observe that ROAM with level 1 features and a little bit

expansion is almost as good as SVM with level 2 features. ROAM with level 2 and a little

bit expansion is equal to or better than SVM.

4http://www.csie.ntu.edu.tw/∼cjlin/libsvm

87

We note that the size of the classification feature space is much larger than the number

of motifs. For example, when the number of motifs equals 100, the number of level 2 features

equals nearly 1200.

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 100 80 60 40 20 0

N
um

be
r

of
 M

ot
ifs

F1 Measure

Flat-SVM
SVM(2)

ROAM(1,0.3)
ROAM(2,0.3)

Figure 5.10: N4kB200A3S5.0L20: Accuracy with respect to number of motifs.

Fig. 5.11 shows F1 as the motif-trajectory length varies. As the length increases, the data

gets denser and we observe that SVM’s performance deteriorates. However, ROAM with its

various configurations were fairly stable. Fig. 5.12 shows the effect as standard deviation is

increases from 5 to 40. As expected, F1 decreases as the values get more spread out. One

might have noticed that we have rather large standard deviation values. This is because the

range of values is large (∼1000).

Recall that a larger value of β, the expansion factor, increases the chances that CHIP

will expand the feature space during learning. The effect of different β values vary from one

dataset to another. Fig. 5.13 shows a typical result. In the ROAM(1,∗) curve, ROAM starts

88

 100

 90

 80

 70

 60

 50
 50 40 30 20 10

F
1

M
ea

su
re

Length of Trajectories

SVM(2)
ROAM(1,0.3)
ROAM(2,0.0)
ROAM(2,0.3)

Figure 5.11: N4kB200A3S5.0L20: Accuracy with respect to length of motif-trajectories.

 70

 75

 80

 85

 90

 95

 100

 40 30 20 15 10 5

F
1

M
ea

su
re

Standard Deviation

ROAM(1,0.3)
ROAM(2,0.0)
ROAM(2,0.3)

Figure 5.12: N5kB100M20A3L20: Accuracy with respect to standard deviation.

with level 1 features and improves significantly with expansion. In the ROAM(2,∗) curve, F1

is high initially. It improves slightly with some expansion but eventually drops down. This

is the effect of over-fitting. In other words, CHIP has expanded too greedily and the feature

space has become too specific.

Finally, Fig. 5.14 compares a general feature space vs. a specific one. One is ROAM(2,0),

which is level 2 features with no expansion. The other is ROAM(MAX), which is only the

leaf features. We see that ROAM(2,0) is significantly better in accuracy. Furthermore, it

is also faster. With 60 motifs, ROAM(2,0) took an average of 84 seconds with 705 features

while ROAM(MAX) took 850 seconds with approximately 4350 features.

89

 50

 60

 70

 80

 90

 100

 1 0.8 0.6 0.4 0.2 0

F
1

M
ea

su
re

Expansion Weight

ROAM(1,*)
ROAM(2,*)

Figure 5.13: N500B100M20A3S25L20: Accuracy with respect to β.

 100

 95

 90

 85

 80
 60 50 40 30 20

F
1

M
ea

su
re

Number of Motifs

ROAM(2,0.0)
ROAM(MAX)

Figure 5.14: N15kB500A3S25L20: Accuracy with respect to number of motifs.

Efficiency

With regards to efficiency, we first check sensitivity to the number of trajectories. Fig 5.15

shows a plot broken down into ROAM’s components, note the log scale. As we can see, all

components scale nicely with respect to the number of trajectories. The Motif Extractor is

the slowest, but it was implemented in Python (10–30 slower than C++) while the other

components were in C++.

Another aspect of efficiency is sensitivity to the length of the trajectories. Fig. 5.16 shows

the running time as the length was increased from 10 to 100 in our own data generator. Fig

5.17 shows a similar experiment using GSTD data. Again, we see a linear increase in running

time as trajectory length increased. The reason is that with longer trajectories, there is a

90

 0.1

 1

 10

 100

 1000

 2600 2100 1600 1100 600

R
un

tim
e

(S
ec

on
ds

)

Number of Trajectories

Motif Extractor
Feature Generator

CHIP(1,0.0)
CHIP(2,0.4)

Figure 5.15: GSTD: B200M20: Efficiency with respect to number of trajectories.

linear increase in the number of motif expressions ROAM has to process.

 0

 20

 40

 60

 80

 100

 100 90 80 70 60 50 40 30 20 10

R
un

tim
e

(S
ec

on
ds

)

Average Length of Trajectories

Feature Generator
ROAM(2,0.0)
ROAM(2,0.2)
ROAM(2,0.4)

Figure 5.16: N20000B1000M20A3S10.0: Efficiency with respect to length of motif-
trajectories.

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

R
un

tim
e

(S
ec

on
ds

)

Length of Trajectories

Motif Extractor
Feature Generator

CHIP(1,0.0)
CHIP(2,0.4)

Figure 5.17: GSTD: N2000B100M10: Efficiency with respect to length of trajectories.

91

Input: (1) Training set D = P ∪N , where P and N are the positive and negative examples.
(2) Initial feature set FC ∈ F

′.

Output: Set of classification rules R.

Method:

1. while not all of P is covered
2. initialize new rule r

3. while true
4. find literal l with highest Foil Gain(l, r)
5. find feature f with highest Exp Gain(f, r)
6. if both gains < min gain then break
7. if Foil Gain(l, r) > β · Exp Gain(f, r) then
8. add l to r

9. else
10. add feature f to FC

11. add r to R

12. return R

92

Chapter 6

Subspace Outliers in
Multidimensional Data

As mentioned, one of the differences between the ROAM system and other traditional tra-

jectory clustering or outlier detection algorithms is the combination of multi-dimensional

information with the trajectory. This additional information can be incorporated nicely into

a classification scheme [50]. However, for unsupervised learning (i.e., clustering or anomaly

detection without training), it is a different question. The reason is that there is an exponen-

tial number of subspaces within the possibly very high dimensional space and the anomaly

could occur in any one of them.

We studied exactly this problem except with respect to time series [47], although the

framework can be easily adapted to moving objects. The framework aims to discover non-

trivial anomalies in a time-series data cube given some query. A brute force solution can be

realized if the number of attributes (dimensions) is small. However, this would encounter

major challenges in many real-world problems, where the data is high dimensional (such as

∼100). It is impossible to materialize a full cube in a high-dimensional space. Moreover,

because anomaly in general does not have monotonic property [2], pruning in this large space

is difficult.

We address this difficult problem via a divide-and-conquer approach [48, 47]. Because

anomalies are rare by definition, many of the 2n subspaces (generated from n dimensions) are

not correlated with anomalies. We make two main contributions. First, the high-dimensional

data is partitioned automatically to discover interesting subsets of dimensions and tuples.

Each subset forms a small data cube in itself, and we further propose an efficient top-k cube

93

anomaly mining algorithm. The combination of these two techniques leads to an efficient

discovery of the global top-k cube anomalies.

More specifically, we propose an iterative subspace search algorithm named SUITS

(Subspace Iterative Time-Series Anomaly Search) to mine top-k anomaly cells. Given

a query probe cell in a data cube, one would expect that a descendant cell, which is a subset,

should roughly follow a similar behavior. This leads to the computation of an expected time

series and also the anomaly measure, which measures the difference between the expected

and observed time series. Descendant cells of the probe cell are partitioned by their anomaly

type and amount. For each partition, a correlated subspace data cube in the original high-

dimensional space is extracted, and efficient top-k anomaly mining is performed on it. This

process iterates for all partitions. Each partition produces a local top-k, and they merge to

form an approximation of the global top-k. In experiments with real world sales data, this

was shown to be both effective and efficient.

6.1 Problem Definition

6.1.1 Preliminaries

Time Series. A time series si(t) is a sequence or function which maps time values, t, to

numerical values. The range of t is usually restricted to some interval, and they are typically

discrete values. A time series can represent any type of temporal data. For instance, the

sequence s(t) = 〈5, 10, 13, 7, 2〉 could represent the daily sales of televisions at a store over a

5-day interval: t = [0, 5].

Data Cube. Given a relation R, a data cube (denoted as CR) is the set of aggregates from

all possible group-by’s on R. In an n-dimensional data cube, a cell c = (a1, a2, . . . , an : m)

(where m is the cube measure) is called a k-dimensional group-by cell (i.e., a cell in a k-

94

dimensional cuboid) if and only if there are k (k ≤ n) values among (a1, a2, . . . , an) which

are not ∗ (i.e., all). Given two cells c1 and c2, let V1 and V2 represent the set of values

among their respective (a1, a2, . . . , an) which are not ∗. c1 is the ancestor of c2 and c2 is a

descendant of c1 if V1 ⊂ V2. c1 is the parent of c2 and c2 is a child of c1 if V1 ⊂ V2 and

|V1| = |V2| − 1. These relationships also extend to cuboids and form a structure called the

cuboid lattice. An example is shown in Figure 6.1. The “All” or apex cuboid holds a single

cell where all its values among (a1, a2, . . . , an) are ∗. On the other extreme, the base cuboid

at the top holds cells where none of its (a1, a2, . . . , an) values is ∗.

ABC

A B C

AB

All

BCAC

Figure 6.1: Cuboid lattice

Input Data. Consider a relation R with n attributes A1, A2, . . . , An. Each attribute

Ai contains discrete values. Let there be t tuples in this relation with transaction IDs of

tid1, tid2, . . . , tidt. Let there also be a set of time series S = {s1, s2, . . . , st} where si is

associated with tuple tidi.

Gender Education Income Product Profit Count

Female Highschool 35k–45k Food s1 u1

Female Highschool 45k–60k Apparel s2 u2

Female College 35k–45k Apparel s3 u3

Female College 35k–45k Book s4 u4

Female College 45k–60k Apparel s5 u5

Female Graduate 45k–60k Apparel s6 u6

Male Highschool 35k–45k Apparel s7 u7

Male College 35k–45k Food s8 u8

Table 6.1: Input market segment data

A market analysis sample data is shown in Table 6.1. Each of the four Ai’s represents an

95

attribute on either the customer or the product. Each tuple in this relation corresponds to

a market segment, and the associated time series measures the “Profit” over time. For all

si in S, the period and sampling rate are assumed to be the same (otherwise, preprocessing

and normalization can be performed). In addition, count ui is associated with each market

segment. It records the number of records (i.e., people) in that segment, and its value is

initialized to 1 by default if the field was originally nonexistent.

6.1.2 The Anomaly Search Problem

Given a relation R and its associated time-series set S, a probe cell p ∈ CR, and an anomaly

function g, find the anomaly cells among descendants of p in CR as measured by g.

To search all data and perform a global analysis, one can simply set p to empty; the rest of

the algorithm remains unchanged.

To make the algorithm more practical, we add three extra conditions: (1) each abnormal

cell must satisfy a minimum count (support) threshold, which eliminates trivially small

market segments, (2) anomalies do not have to hold for the entire time series, i.e., g can

be applied to sub-sequences, and (3) only the top k anomaly cells as ranked by g are

returned. These conditions better match usage habits of analysts but are not critical to the

core algorithm. For example, instead of condition (3), one may ask for all the anomalies

larger than a fixed threshold.

Notice that although p is a cube cell, its description is like a selection query. This can

be treated as a selection query, σp(R), i.e., select exactly the set of tuples in R which satisfy

p in CR.

For each cell c in CR, there is an associated time series, denoted as sc, and called an

observed time series. In the context of a query probe p, sc is computed by aggregating

96

time series from S whose corresponding tid’s are in σp(R) and also c.

sc =
∑

tidi∈ c ∩ σp(R)

si (6.1)

In market analysis, S is typically a numerical measure, such as sales or profit. The aggrega-

tion function can be either SUM or AVG, depending on the application semantics. Here we

take SUM by default. In general, any distributive or algebraic aggregation function may be

substituted.

At each cell, we will also calculate an expected time series, denoted by ŝc. The measure

of anomaly will be a function on the observed and expected time series, i.e., g(sc, ŝc) → R.

Since the topic of the paper [47] was time series, we developed several measures of g with

respect to time series data. Because they are not pertinent to our discussion of moving

objects, we will skip them. Suffice it to say, g measures the difference between sc and ŝc and

returns an anomaly type and anomaly amount. To adopt g to moving objects would require

taking one of the building blocks of similarity between trajectories and fitting it to g. We

studied exactly in a recent work [45], but it has not been integrated into a multi-dimensional

framework yet.

6.1.3 Ranking Anomalies in Data Cube

With g defined for the anomaly types, we can rank all descendant cells of p in descending

order according to their absolute g values. In all four types, a larger absolute g value indicates

a more substantial anomaly. The original query would then return the top-k market segments

in this ranking. However, because the four types of g’s are incompatible, it may not make

sense to rank them together. Rather, it is more sensible to have a separate ranking for each

distinct g. As a result, the top-k would be on individual types. With four types of anomalies

defined, the final result would consist of 4k market segments.

97

6.2 Mining Top-K Anomalies in Data Cubes

With g defined, we return to the original problem of finding top-k anomaly cells among

the descendants of p. A näıve solution to this problem is given in Algorithm 2. Its main

observation is that CR is unnecessary because the query only focuses on p. Thus, it only

computes the data cube Cp using σp(R) as the fact table. After Cp is constructed, the top-k

anomaly cells within it are returned.

Algorithm 2 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 2 is how to deal with the high dimensional space; if

there are n attributes in R, there are 2n cuboids (subspaces) in Cp to examine in order to

produce the final answer. This effectively prohibits full materialization of Cp for a medium

n even if σp(R) does not contain many tuples. To solve this problem, we propose a new

algorithm SUITS, which iteratively select subspaces with the most potential of containing a

top-k anomaly. Anomaly detection over a subspace tends to be very efficient since a subspace

has typically a small number of attributes (dimensions). Fortunately, because anomalies are

rare by definition, many of the 2n subspaces are not correlated with anomalies. Figure 6.2

shows the general framework.

A natural question is then, “Which subspaces out of the 2n should one examine?” SUITS

chooses them based on the behaviors of the time series data (i.e., ti’s). Roughly, abnormal

time series in σp(R) are separated into individual anomalies, and their correlated subspaces

98

Subspaces
Cube
Series

Time

Cube
Series

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Top−K
Cube Outliers

...
1A A 2

1
t

t 2...

...

Candidate

Time

Figure 6.2: SUITS Framework

are chosen as candidate subspaces. These subspaces are then examined via exact cubing

analysis. This approach avoids the curse of dimensionality in the original input data and

turns it into a set of manageable sub-problems.

Additionally, during the computation of top-k’s within a single subspace, the search

space can be pruned if one detects that certain cuboids and their descendants does not

have the potential to penetrate the top-k. This pruning method is developed in SUITS, and

unpromising lattices in the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows: (1) search for a group of

anomalies, (2) find a subspace correlated with the group, and (3) compute the local top-k

anomalies in the subspace data cube. The local top-k’s of step (3) are merged together

to form the global top-k. Though this merge is an approximation, we will show empirically

that it usually matches the true top-k.

6.2.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also needs to first retrieve the set of

data relevant to the query probe p, i.e., σp(R). Since there will be many different query

probes posed to the same database, it is important to make this retrieval and its subsequent

processing efficient. Thus, we perform preprocessing by pre-computing and storing CR’s

shell-fragments [48] independent of the query and develop a shell fragment-based retrieval

method.

99

A single shell fragment is a cuboid in CR on a d-dimensional attribute group where d is a

small number (e.g., 1 to 3). For each cell in a fragment, the tid list of the associated tuples

in R is recorded. For example, the shell fragment for the Gender dimension would contain

two cells (i.e., “Male” and “Female”) and each would record essentially an inverted index on

the tid’s. A complete set of shell fragments (i.e., where each dimension in R is represented

in at least one shell fragment) is sufficient to compute any query on CR. Shell fragments are

efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is simple. For each attribute-value

restriction pair in p, we fetch its tid list from the most appropriate shell fragment. The

intersection of all such tid lists is exactly σp(R). This process is efficient no matter how

many dimensions there are in R. Additionally, if p overlaps with some multi-dimensional

shell fragments, efficiency will be vastly improved since those intersections are already pre-

computed.

6.2.2 Selecting Candidate Subspaces

The idea of examining subspaces also exists in other problems. Subspace clustering [60]

aims to find clusters in some of the 2n subspaces. Principle component analysis and singular

value decomposition also find more useful subspaces. In these problems, useful subspaces

are discovered using signals such as density or class labels. In SUITS, the time series data

are the signals. Intuitively, a significant anomaly at a cube cell should carry through to

some of its descendants; for if all descendants are normal, their common ancestor would also

be normal. Furthermore, descendants of common abnormal ancestors should also exhibit

similar anomalies. Specifically, tuples in σp(R) that share a common abnormal ancestor cell,

which would also be a descendant cell of p, are likely to exhibit similar anomalies.

SUITS exploits this notion by grouping the tuples in σp(R) based on their anomaly types

and values. For a set of tuples in σp(R) to be in the same group, they must have (1) the

100

same anomaly type, (2) similar anomaly scores (e.g., ±δ range), and (3) same time span.

Roughly, tuples within a group are base-level descendants of a single anomaly in a (possibly

high level) descendant of the probe cell. At each iteration, the largest group is extracted

and the most promising attribute values within it form the candidate subspace. This process

starts with the construction of a Time Anomaly Matrix.

Education Income S[1] S[2] S[3]

M
ea

su
re

Time

M
ea

su
re

Time

M
ea

su
re

Time

Highschool 45k–60k None Magnitude Magnitude

M
ea

su
re

Time

M
ea

su
re

Time

M
ea

su
re

Time

College 35k–45k Phase None Misc

M
ea

su
re

Time

M
ea

su
re

Time

M
ea

su
re

Time

College 45k–60k Phase Magnitude Magnitude

M
ea

su
re

Time

M
ea

su
re

Time

M
ea

su
re

Time

Graduate 45k–60k None Magnitude Magnitude

Table 6.2: Time Anomaly Matrix

The Time Anomaly Matrix has size T ×Q, where T is the number of tuples in σp(R) and

Q is the number of sub-sequences SUITS will examine within S. Partitioning the time series

satisfies the condition that anomalies will be found in sub-sequences. In business and many

other applications, how to partition the si’s is often natural, e.g., every financial quarter.

Each entry (i, j) in the matrix corresponds to the jth time series sub-sequence of the ith

tuple in σp(R), and the value stored in the entry is the anomaly type and anomaly value

of the corresponding sub-sequence. Formally, let s[j]ci
represent the jth sub-sequence of sci

where ci is the ith cell or tuple in σp(R). Then, the (i, j) entry in the matrix contains the

output of g(s[j]ci
, ŝ[j]ci

).

Example 11 (Time Anomaly Matrix) Using R from Table 6.1, let p be (Gender = “Fe-

male”, Product = “Apparel”). For each tuple’s si, we divide it into three pieces. Table 6.2

101

shows the results. Under each piece is the anomaly type; we have omitted the score for

simplicity.

The Time Anomaly Matrix merely calculates anomalies in the base cuboid. Our overall

goal is to find anomalies in possibly high-level cube cells. To enumerate all possible cube

cells is cumbersome; instead we iteratively select potential subspaces. This process starts

with the grouping of cells in the matrix. We use a simple method of hashing entries in the

matrix into buckets by their anomaly type, anomaly score, and time. Each bucket will only

hold one type, a small range of scores, and consecutive time spans. We then greedily select

the largest such group by choosing the largest bucket. In Table 6.2, the six entries with

Magnitude anomaly (in bold) form the largest group.

The next step is to find a useful subspace associated with this group. To exhaustively

search for this is prohibitive. In many high-dimensional problems, greedy/heuristic meth-

ods are used to “bypass” the curse of dimensionality. For example, decision trees use an

information-theoretic heuristic to greedily choose the decision nodes independently. CLIQUE

[3] uses a coverage measure to select clusters in subspaces and greedily grow them to form

bigger clusters. [2] uses an evolutionary algorithm to detect outliers in high-dimensional

data. In SUITS, we take a similar approach by evaluating the attribute values individually

in a statistical test to determine how well alone it correlates with the anomaly group. We

term the score of this test the Anomaly Likelihood (AL) score. The few top-scoring val-

ues then form the correlated subspace. To measure the AL score of an attribute-value pair

(ai = vj), the purity of attribute ai is calculated first via entropy.

Entropy(ai) = −
∑

vj∈ai

p(vj) log2 p(vj) (6.2)

A “pure” attribute, that is an attribute whose values are homogeneous, would have low

entropy; while an “impure” attribute whose values are uniformly distributed would have

102

high entropy. If an attribute is pure, it is more likely to be correlated with the group than

one that is impure. To give a trivial example, consider the Gender attribute for p in Example

11. It is 100% pure because all its values are “Female” and is trivially correlated with any

anomaly. The equation below shows the AL score formula.

AL(ai = vj) = Frequency(ai = vj)× Entropy(ai)
−1 (6.3)

For each value vj, it is also weighed by its frequency within the group. One can see that

attribute values that occur very frequently and within a homogeneous attribute will have

high AL scores.

Example 12 (AL Scores) Table 6.3 shows results from the Magnitude anomaly group in

Table 6.2. Within the Income attribute, the value “45k–60k” appears 3 times and no

other value appears. The Income attribute is pure and thus scores an infinity for the AL

score. Within the Education attribute, 3 different values appear uniformly, which maximizes

entropy. In this case, Income = “45k–60k” is clearly correlated with the anomaly while

Education is not. The AL score reflects this notion.

Attribute Value Frequency AL Score

Income = 45k–60k 3 ∞
Education = Highschool 1 1.58
Education = College 1 1.58
Education = Graduate 1 1.58

Table 6.3: Attribute value AL scores

In practice, Table 6.3 would be much bigger and the differences within it would not be

as clear-cut. We select the top few scoring (5–7) attribute-value pairs to be candidate

attribute values. The subspace formed by these values is the candidate subspace.

103

6.2.3 Discovering Top-K Anomaly Cells

The set of candidate attribute values describes a subspace within the original high-dimensional

space. Its correlation to anomalies has only been suggested via simple entropy analysis. In

this section, more exact cubing analysis is performed and the top-k cells in the subspace are

found.

Let the set of candidate attribute values be B. A straight-forward solution is to material-

ize the data cube CB, rank all cells by g, and return the top k. Note that the dimensionality

of CB is not necessarily equal to |B|. In Table 6.3 for example, even if all four attribute

values are added to B, dimensionality is still just two. Second, to compute CB, all tuples

in σp(R) are used, not just the candidate group. This ensures the detected top-k patterns

apply globally. Though to ensure sub-sequences are searched, CB only includes the time

span of the found group.

This solution is definitely viable since CB is relatively small. But we make two modi-

fications in order to improve its efficiency. First, the number of times regression needs to

be performed can be reduced through a property of the least-square error fitting. Second,

branches in CB can be pruned from the top-k search via an upper bound on g. The detail

of these modifications can be found in [47]. Since they depend on properties of time series

data, they will be skipped here.

6.2.4 Iterative Search

After discovering the local top-k cells in a subspace, they are merged into a global top-k.

Entries from the original group are removed from the Time Anomaly Matrix. The whole

process repeats until the Time Anomaly Matrix is empty. In the example of Table 6.2, the

first iteration finds the rule: “Income = 45k–60k → Magnitude Anomaly : S[2–3]”. In the

next iteration, the entries with phase anomaly are selected and produce the following rule:

104

“Education = College → Phase Anomaly : S[1]”. Algorithm 3 shows a high-level summary

of SUITS.

Algorithm 3 SUITS

Input & Output: Same as Algorithm 2

1. Retrieve data for σp(R)
2. Repeat until global answer set contains global top-k
3. B ← candidate attribute values from {A1, . . . An}
4. Retrieve top k anomaly cells from CB using g and m

5. Add top k cells to global answer set
6. Remove discovered anomalies from input
7. Return top k cells in global answer set

6.3 Experiments

To show the effectiveness of SUITS, we experimented with both synthetic and real world data.

SUITS was implemented in C++ and compiled with GCC. All experiments were performed

on a Linux machine with an Intel Core2 E6600 CPU and 2GB of memory.

6.3.1 Real World Data

We obtained real sales data from a Fortune 500 company. For confidentiality reasons, the

name of the company, the names of products, or actual sales numbers cannot be revealed.

The data include records from 1999 to 2005 and contains over 925,000 sales and nearly 600

dimensions. The measure in the cube is number of sales. g was computed for the entire

time span and not sub-sequences.

In Table 6.4, we show efficiency results of many trend anomaly queries. For each query,

we processed it in three different ways. First, we used the Näıve algorithm as described in

Algorithm 2. Second, we used SUITS0, which is SUITS without the top-k pruning. That is,

105

it uses the iterative subspace search but local candidate cubes are fully materialized. And

lastly, we used SUITS as described in the paper. Table 6.5 shows a similar experiment with

magnitude anomaly queries except without SUITS0. In both tables, |R| shows the total num-

ber of dimensions in the data; we chose a relatively small set of low dimensionality because

Näıve would often run out of memory with larger data sets of even medium dimensionality.

Probe |R| Näıve SUITS0 SUITS Common
Time Time % Imp. Time % Imp.

Male, Single 10 14 5.9 58% 5.4 61% 9
Male, Married 10 299 95 68% 60 80% 10
Male, Divorced 10 3.6 2.8 22% 2.8 22% 10
Female, Single 10 15 8.2 46% 7.0 53% 9
Female, Married 10 114 31.0 73% 23.0 80% 8
Female, Divorced 10 5.5 3.8 31% 3.7 33% 10
Post-Boomer, Child=0 11 68.8 39.6 43% 32.1 53% 10
Post-Boomer, Child=1 11 16.8 5.4 68% 4.8 71% 10
Post-Boomer, Child=2 11 15.5 7.8 50% 6.7 57% 10
Boomer, Children=0 11 108.9 75.7 30% 52.4 52% 10
Boomer, Children=1 11 120.3 68.9 43% 58.0 52% 10
Boomer, Children=2 11 46.6 27.2 42% 23.6 49% 10

Average 48% 55% 9.6

Table 6.4: Run times of trend anomaly query with low dimensional data (10 ≤ |R| ≤ 11)

Probe |R| Näıve SUITS Common
Male, Single 10 13.4 8.2 38% 10
Male, Married 10 182.4 46.9 74% 10
Male, Divorced 10 4.1 3.1 24% 10
Female, Single 10 15.4 7.7 50% 10
Female, Married 10 85.5 17.4 80% 9
Female, Divorced 10 6.5 4.1 37% 10
High School 11 92.5 22.9 75% 10
College 11 382.4 35.5 91% 10
Post-Graduate 11 110.7 34.9 68% 10

Average 60% 9.9

Table 6.5: Magnitude anomaly query run times

In both tables, we notice that SUITS is, on average, over 50% faster than the Näıve

106

algorithm. This is especially true for the large queries, either by a large number of dimensions

or large number of tuples. This is not surprising because SUITS breaks a very large problem

into more manageable parts. Figure 6.3 shows a closer look at a single query as the number of

dimensions increase from 7 to 14. At 7, the Näıve algorithm is faster than SUITS, because the

data cube is relatively small and SUITS has additional overhead. However, as dimensionality

increases, the trends of Näıve and SUITS are very different. Näıve shows the expected curse of

dimensionality; in fact, with |R| = 12, Näıve ran out of memory for full cube materialization.

With SUITS, we observe a more or less linear or even sub-linear behavior. This is because

SUITS is more dictated by the anomalies inside the data rather than the external size of the

data.

 0

 50000

 100000

 150000

 200000

 250000

 7 8 9 10 11 12 13 14

Q
ue

ry
 R

un
tim

e
(m

s)

Number of Dimensions

Naive
SUITS

Figure 6.3: Running time vs. number of dimensions

As mentioned previously, the top-k produced by SUITS is not guaranteed to be the same

as the true top-k. This could occur if particular attributes or combinations of attributes are

not examined within a single iteration of SUITS. In practice, we noticed that this sometimes

happens with dimensions of high cardinality (e.g., zip code, state). The reason is that high-

cardinality dimensions often have high entropy just by definition and thus low AL scores.

And so they sometimes are not picked as candidates. An easy way to fix this would be

normalize entropy based on the cardinality of the dimension. However, this scenario is

usually the exception rather than the rule. The last columns of Tables 6.4 and 6.5 show

the number of items in the top-10 that is common between the SUITS top-10 and the true

top-10. As they show, SUITS usually produces the same top-10 as the true top-10.

107

6.3.2 Synthetic Data

To test SUITS in a more controlled environment, we also generated our own data. Each

data set consisted of 95% normal, background “noise” and 5% abnormal patterns. For the

normal portion, each value under each dimension was picked uniformly and independently

between 1 and 5. Each value inside the count and time series measure was also picked

uniformly and independently between 0 and 5. For the abnormal portion, 10 abnormal

patterns were generated. Each pattern consists of 1–3 dimensions and a randomly chosen

count/measure pattern. These 10 patterns are randomly inserted into the data 5% of the

time. For all queries in the rest of this section, p was set to a random 2-dimension query.

Each experiment was repeated 10 times to get an average.

Figure 6.4 shows running times in a 10-D data set as the number of tuples increases with

everything else fixed. Both SUITS and Näıve exhibit linear complexity; even though SUITS

is iterative. This is expected because the size of the Time Anomaly Matrix grows linearly

with data size and so does the number of iterations needed to cover it.

 0

 5000

 10000

 15000

 20000

 100 150 200 250 300 350 400 450 500

Q
ue

ry
 R

un
tim

e
(m

s)

Number of Tuples (1000s)

Naive
SUITS

Figure 6.4: Running time vs. number of tuples

Curse of dimensionality is a well-known problem in data cubing and other multi-dimensional

analysis. In SUITS, because bulk of the analysis is spent on subspaces, the overall dimen-

sionality should not affect running time too much. Figure 6.5 shows running time as

dimensionality increases from 6 to 16 but everything else remained the same. The number

of tuples was 250,000. With the Näıve method, the running time quickly runs out of con-

trol. With SUITS however, we observe a relatively linear or flat curve. The flat portion is

108

explained by the sparsity of the high dimensional data. In these cases, SUITS may only run

a couple of iterations because anomalies are so easy to find.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 6 8 10 12 14 16

Q
ue

ry
 R

un
tim

e
(m

s)

Number of Dimensions

Naive
SUITS

Figure 6.5: Running time vs. number of dimensions

One of the reasons we chose regression as the method of representation for time series

data was that it allows aggregation from intermediate results as opposed to from scratch.

Figure 6.6 corroborates this assertion. The data had 8 dimensions and 250,000 tuples. As

the length of the time series increases from 20 to 100 with everything else fixed, one observes

a linear increase for the Näıve method. This is expected because there are just more numbers

to aggregate. For SUITS, the increase is much flatter since the length of time series does

not affect aggregation of regression parameters. The minor increase is probably due to the

increase in time to compute the least-square fit.

 0

 5000

 10000

 15000

 20000

 20 30 40 50 60 70 80 90 100

Q
ue

ry
 R

un
tim

e
(m

s)

Length of Time Series

Naive
SUITS

Figure 6.6: Running time vs. length of time series

109

Chapter 7

Temporal Traffic Outliers

One very practical and important problem in vehicle traffic analysis is outlier detection. A

typical definition of an outlier is “an observation (or a set of observations) which appears

to be inconsistent with the remainder of that set of data [5].” This rather vague definition

can lead to many different outlier detection algorithms. This particular work focuses on the

detection of temporal outliers. Previous studies have addressed temporal data [35, 84, 45].

But time has usually been represented as a set of dimensions and the outlier is measured

for the entire timespan. In one of our recent studies [53], outliers are measured with respect

to (1) other points in the dataset, (2) temporal history of itself, and (3) temporal history of

other points in the dataset.

This work will primarily use the application scenario of detecting temporal outliers in

vehicle traffic data, though other domains such as social networks or sensor networks are

applicable as well. More specifically, it seeks to detect outlier behavior in the set of road

segments of the traffic data and not individual moving objects. For example, consider Figure

7.1, which shows the load (count) of vehicles on road segment X over the course of several

days.

From this figure alone, there does not seem to be any abnormal behavior. The average

speed roughly follows a periodic function with one day being the period. But suppose

additional information about other road segments in the city are given. Figure 7.2 shows

the average speed of several other road segments in the city.

Road segment X remains the same in Figure 7.2. But in light dashed lines are many

110

July 5July 4July 3July 2July 1

Lo
ad

Time

Road Segment X

Figure 7.1: Historical Speed on Road Segment X

July 5July 4July 3July 2July 1

Lo
ad

Time

Road Segment X
Similar Road Segments

Dissimilar Road Segment

Figure 7.2: Historical Speed on Many Road Segments

other road segments that have similar loads as road segment X from July 1st to July 4th. On

July 4th, however, they all show an increase in load while X remains the same. The question

of outliers has now become much trickier. If there are thousands of these historically similar

road segments and they all show the same increase on July 4th (a national holiday in the

United States) and yet X remains low, X has now just become an outlier. Recall the outlier

definition regarding “inconsistency.” This example and the rest of this work use historically

similar neighbors as the basis for consistency comparisons. In Figure 7.2, the darker dashed

line does not show historical similarity to X so it is not considered in X’s analysis.

This work presents the Temporal Outlier Discovery or TOD framework for detecting

temporal outliers. In contrast to other algorithms, this method utilizes agglomerated tempo-

ral information of the entire dataset to detect outliers. At each time step, each road segment

checks its similarity (based on load, speed, or any other measure) vs. other road segments in

the traffic data, and the historical similarity values are recorded in a temporal neighborhood

vector at each road segment. Outliers are calculated from drastic changes in these vectors.

111

By using the historical similarities between road segments, the method is robust to global

changes such as weekend or holiday traffic in the measure itself. Further, instead of using a

clustering method to record whether two road segments belong to the same cluster over time,

the temporal neighborhood vectors allow temporal flexibility since traffic is very dynamic

and a binary answer is often impossible to reach. Likewise, the final outliers are not binary

either. An outlier score is given to each road segment in the dataset where a higher score

indicates a larger likelihood of a road segment being an outlier.

The rest of the chapter is organized as follows. Section 7.1 discusses the representation

of road segments. Section 7.2 formally defines outliers and the detection algorithm. Section

7.3 describes the overall TOD framework. Experiments are shown in Section 7.4.

7.1 Road Segment Representation

The first step in the TOD framework is to represent the vehicle traffic data in a formal feature

space. This section discusses the form of the raw input data and feature vector construction

of road segments.

7.1.1 Input Data

At the raw level, input data contains timestamped locations in a road network. This can

be gathered via GPS sensors in the moving vehicle or external sensors installed throughout

the city (e.g., RFID). Because the vehicles are physically restricted in the road network, this

naturally leads to a graph representation of the road network. More formally, let the road

network be represented with a planar graph G = (V,E) where the set of vertices V represent

street intersections and the set of edges E represent road segments. Then, the most basic

input data is a set of timestamp and edge tuples: {(t, i), . . .} where t is some time value

and i is some edge in E. Note that the IDs of the vehicles are not needed since the outlier

112

analysis is focused on behaviors of road segments (i.e., E). In many real world scenarios,

the IDs are unavailable anyway due to privacy concerns. Also, because the analysis operates

on the edge level, the exact position along edge i is ignored. Only the binary edge traversal

is recorded. Furthermore, depending on the analysis goal, other attributes can be added to

the basic tuple of (t, i). For instance, if speed and weather are of interest, each tuple could

take the form of (t, i, s, w) where s is the speed and w is the weather.

7.1.2 Feature Space

In order to formally compare edges in terms of temporal behavior, every edge in E is mapped

to a point in some feature space. The TOD framework allows for any number of feature

dimensions. Depending on the application, the features can be spatial or not. For instance,

if the goal were simple speed outlier detection, then the spatial location of the road segments

could be excluded. Let the set of used features be F , then every road segment is mapped to

a point in R|F|.

Table 7.1 shows an example of four road segments with two features values indicating

the average speed on them during the morning and afternoon hours of a day. This coarse

granularity point-of-view is probably going to be ineffective in the real world, but it is used

here to conserve space. Because the data changes temporally and temporal outlier is the

topic at hand, these two feature values are updated every day (or any other time period)

using the traffic data. That is, every input tuple as described in the previous section is

processed to update the appropriate feature(s) in the corresponding road segment. Table

7.1 shows 3 consecutive days of feature values.

With the feature space constructed and the road segments mapped to points, one can

now formally discuss a similarity measure or distance metric between edges. Some examples

include the Euclidean distance, cosine similarity, Manhattan distance, and L-∞ distance.

The specifics of the metric depend heavily on the final application. More will be discussed

113

Day 1 Day 2 Day 3
AM Speed PM Speed AM PM AM PM

1 3 20 3 19 10 20
2 5 21 3 21 4 22
3 2 20 3 23 3 21
4 15 32 4 23 20 20

Table 7.1: Sample Feature Space

later about how these distances will be used.

7.2 Temporal Outlier Detection

Outlier analysis in TOD depends heavily on the time dimension. A prerequisite for this is the

existence of some temporal patterns in the data. The next few paragraphs will show that this

is the case in real world data both in terms of the measure (e.g., speed) and neighborhood

relationships. Figure 7.3 shows the average percent deviation in average daily speed and

average daily load (i.e., count) of taxicabs on over 20,000 road segments in the San Francisco

area during the month of July 2006; the road segments are chosen for having at least 50

vehicle traversals per day. The average speed and average load on each road segment are

calculated every day, and the graph shows the average percent change from the previous day

for all road segments. There are over 33 million recorded vehicle road segment movements

in the data set.

-100

-50

 0

 50

 100

 150

 200

July 20July 15July 10July 5July 1

%
 C

ha
ng

e
fr

om
 P

re
vi

ou
s

D
ay

Day

Average Daily Speed
Average Daily Load

Figure 7.3: Stability of Average Daily Speed and Load

114

As the figure shows, the average daily speed is very stable (modulo the spikes for now)

day-to-day. Though not particularly surprising, this is good news for temporal outlier de-

tection. It shows that there are stable trends and they can be used as a basis for outlier

detection.

There are several big spikes in the average load deviation in Figure 7.3. They occur

around July 3rd and July 18th. While one may attribute the first spike due to July 4th, a

national holiday in the United States, a closer look into the data reveals the true cause. Due

to either sensor error or data collection error, no traffic was collected for a 12-hour period

on July 2nd, an 18-hour period starting on the night of the 16th until noon on the 17th,

and a 12-hour period on the 24th. If the outlier detection system used simple historical

trends based solely on the measure itself, these spikes would generate many outliers. But

they would all be erroneous because the change was global. On a lesser scale but not due to

data error, weekend/weekday/holiday shifts will also produce erroneous outliers.

The TOD framework uses a different method of outlier detection. Instead of evaluating

the trends of the measure(s) directly and singularly, trends of similar neighbors based on

the measure(s) are evaluated. Figure 7.4 shows a confirmation of this observation from real

world data. In it, neighbor road segments according to speed (± 5MPH) and load (± 50

cars) of each road segment is calculated on every day. Then, the average percent change in

the size of a continual intersection of this neighbor set of all road segments is plotted against

time. The plots are erratic at the beginning because stable neighborhoods have not been

established yet. But as time goes on, the neighborhoods become very stable with an average

deviation of less than 5%. More interestingly, around July 16th and July 17th where data

loss caused huge spikes in Figure 7.3, Figure 7.4 barely shows any effect. This is because the

data loss was global and entire neighborhoods shifted together. As a result, locality of road

segments in the feature space is preserved.

The outlier detection scheme in TOD is motivated by the stable neighborhoods. Given a

115

 0

 5

 10

 15

 20

 25

 30

July 20July 15July 10July 5July 1

%
 C

ha
ng

e
fr

om
 P

re
vi

ou
s

D
ay

Day

Average Daily Speed
Average Daily Load

Figure 7.4: Speed and Load Neighborhood Stability

road segment with a historically stable set of neighbors (in feature space, not physical space),

an outlier is loosely defined as a drastic change in the membership of this set. The power of

this method vs. a method that measures only the singular road segment is that it is robust

to population shifts. For example, on a weekend, the behavior of many road segments are

likely to change. But because these changes are likely to be similar, the uniform global shift

will not affect the set of stable neighbors.

7.2.1 Temporal Neighborhood Vector

A natural method to record temporal neighborhoods is clustering. One could cluster road

segments at each time step and link them temporally. The problem with this approach is

that it is very rigid. It is difficult to say definitively whether two edges belong to the same

cluster over a long period of time. Not only would that make the final answer extremely

sensitive to the clustering method and associated parameters, it would also not allow any

latitude in slight temporal changes. In contrast, TOD uses a more local and flexible method

to maintain stable neighborhoods: Temporal Neighborhood Vectors.

Definition 10 (Temporal Neighborhood Vector) Every edge i maintains a vector ~vi to

record historical similarities to other edges. The length of this vector is N = |E|. Every jth

value, vi,j, in the vector records the historical similarity between edge i and edge j. A large

vi,j indicates high historical similarity and vice-versa. Initially, all vector values are set to

116

0.

The temporal neighborhood vectors indicate the “probability”, in a non-technical sense,

that edges i and j are similar to each other over time. The usage of a real value to indicate

historical similarity is much more flexible than a binary flag in clustering. The degree of

similarity over time can be easily expressed.

At every time step, each value vi,j is adjusted up or down depending on the similarity

between edge i and j at that instant. TOD uses a threshold to determine similarity.

Definition 11 (Instantaneous Similarity) Let d(i, j) be a distance function defined on

the feature space. Then, edges i and j are similar with respect to an instant in time and the

particular feature values at that instant (i.e., instantaneously similar) if d(i, j) ≤ θ.

The temporal neighborhood vector values are updated differently based on whether in-

stantaneous similarity holds true or false. As a simple example, consider the Day 1 data

from Table 7.1. Let d(i, j) be the L-∞ distance (i.e., maximum absolute difference between

feature values). Table 7.2 shows the L-∞ distance between pairwise edges on Day 1.

Edge Pairs L-∞ Distance
L-∞(1, 2) 2
L-∞(1, 3) 1
L-∞(1, 4) 12
L-∞(2, 3) 3
L-∞(2, 4) 12
L-∞(3, 4) 13

Table 7.2: Edge Similarity Values for Day 1

Let θ = 5. In this case, edges 1, 2, and 3 are instantaneously similar to each other while

edge 4 is not to any other edge. Assume, for now, that each vi,j gets incremented by 1

if edges i and j are similar and decremented by 1 otherwise (with a minimum of 0). The

temporal neighborhood vector of edge 1 is then 〈1, 1, 1, 0〉. The first value v1,1 indicates edge

117

1 is similar to itself, which is always true. The second value v1,2 indicates edge 1 is similar

to edge 2 and so forth.

7.2.2 Temporal Vector Update Rules

With instantaneous similarity defined, the next step is then updating the neighborhood vec-

tors temporally, where time is essentially a sequence of instants. As mentioned briefly before,

the amount of change in ~vi at each time step is the measure of anomaly or “outlier-ness” for

edge i. Thus, it is critically important to have proper update rules. Before presenting the

exact formulas, which are formally simple, some motivation is needed to justify them.

Recall that a large vi,j value indicates high historical similarity between edges i and j.

This naturally leads to the conclusion that if edges i and j are instantaneously similar, then

vi,j should increase. Likewise, if edges i and j are instantaneously dissimilar, then vi,j should

decrease. A natural inclination might be to simply add 1 to vi,j every time d(i, j) ≤ θ and

subtract 1 otherwise. The total absolute change in ~vi is the outlier score for edge i at each

instant.

This system is simple but flawed. The amount of reward or penalty for two edges being

instantaneously similar or dissimilar is the same regardless of their previous history. This

seems unfair since a previously strong or weak historical relationship should have a different

impact on the temporal neighborhood vector and the outlier score. TOD uses the following

intuitions based on the existing similarity values.

1. If two edges are historically similar, then a new instantaneous similarity can be noted

lightly.

2. If two edges are historically similar, then a new instantaneous dissimilarity should be

noted heavily.

118

3. If two edges are not historically similar, then a new instantaneous similarity should be

noted heavily.

4. If two edges are not historically similar, then a new instantaneous dissimilarity can be

noted lightly.

Compared to the simple fixed increment/decrement system, this set of intuitions provides

a varying degree of reward or penalty based on the existing similarity value. For example, if

two historically similar neighbors all-of-a-sudden break their similarity, the penalty is large

and in turn causes a large outlier score. Figure 7.5 shows a graphical representation that

summarizes the four intuitions listed above. In the figure, the x-axis shows the existing

similarity value, and the y-axis shows the amount of penalty or reward in a generic sense.

Exact values notwithstanding, the two curves portray the intuitions accurately. In the reward

curve, at low levels of similarity (left side), the reward is larger than at high levels of similarity

(right side). The opposite is true in the penalty curve.

 0
 0

C
ha

ng
e

to
 S

im
ila

rit
y

Existing Similarity

Reward
Penalty

Figure 7.5: Similarity-based Reward/Penalty to vi,j

The two curves in Figure 7.5 are easily identifiable as exponential functions. This turns

out to be the case in TOD. Let the period of update be daily and consider the similarity

value vd−1
i,j between edges i and j on day d−1. If these two edges are instantaneously similar

on the next day d, the reward is defined as

reward(i, j, d) = α
vd−1

i,j −α2

1 α1 < 1.0, α2 ≥ 0 (7.1)

119

For progressively larger vd−1
i,j values, the reward naturally becomes smaller. The update

function for vd
i,j is then

vd
i,j = vd−1

i,j + reward(i, j, d) (7.2)

The same equation applies to penalties as well. If edges i and j are instantaneously

dissimilar on day d, the penalty is defined as

penalty(i, j, d) = βvd−1

i,j β > 1.0 (7.3)

For progressively larger vd−1
i,j values, the penalty becomes larger exponentially. The update

function for vd
i,j is then

vd
i,j = vd−1

i,j − penalty(i, j, d) (7.4)

The question then becomes how to set the α1, α2 and β values. A small α1 quickly reduces

the reward as existing similarity increases, and a large β quickly increases the penalty as

existing similarity increases. Section 5.2 will discuss them in more detail.

Continuing the running example, the updated temporal vectors from Day 1 until Day 3

from Table 7.1 are shown in Table 7.3. α1 is set to 0.9, α2 is set to 0, β is set to 1.1, θ is set

to 5, and d(i, j) is set to L-∞. There is a minimum of 0 to any vi,j value.

Edge Temporal Neighborhood Vectors
Day 1 Day 2 Day 3

1 〈1, 1, 1, 0〉 〈1.9, 1.9, 1.9, 1〉 〈2.7, 0.7, 0.7, 0〉
2 〈1, 1, 1, 0〉 〈1.9, 1.9, 1.9, 1〉 〈0.7, 2.7, 2.7, 0〉
3 〈1, 1, 1, 0〉 〈1.9, 1.9, 1.9, 1〉 〈0.7, 2.7, 2.7, 0〉
4 〈0, 0, 0, 1〉 〈1, 1, 1, 1.9〉 〈0, 0, 0, 2.7〉

Table 7.3: Day 1–3 Temporal Neighborhood Vectors

120

7.2.3 Temporal Outlier Scoring

Outliers in TOD are measured from drastic changes in the temporal neighborhood vectors.

Intuitively, the most drastic or abnormal changes are ones that differ the most from historical

values. Furthermore, the more stable the historical values are previously, the more the change

should contribute to the overall outlier score. Fortunately, these intuitions are easily captured

in the reward and penalty equations in the previous section. Because vd−1
i,j is in the exponent

of Equations (7.1) and (7.3), the big rewards and penalties will come from previously stable

trends (either similar or dissimilar). The outlier score of edge i on a particular day is then

equal to the sum of rewards and penalties. Let vd
i,j represent the value of vi,j on day d. Then,

the outlier score of edge i on day d, OS(i, d), is defined as

OS(i, d) =
N

∑

j=1,j 6=i

∣

∣vd
i,j − vd−1

i,j

∣

∣ (7.5)

With N fixed, large changes in vi,j’s are necessary in order to produce a large outlier score.

Consider the various types and semantics of changes from vd−1
i,j to vd

i,j. There are two sit-

uations when vd−1
i,j increases. First is when a historically similar neighbor (i.e., large vd−1

i,j)

is instantaneously similar yet again. This is not particularly surprising and Equation (7.1)

treats it lightly. Second is when a historically dissimilar neighbor (i.e., small vd−1
i,j) becomes

similar. This is somewhat surprising and Equation (7.1) gives a large reward accordingly.

Conversely, there are also two situations where vd−1
s,j decreases. First is when a historically

similar neighbor becomes dissimilar. This is very surprising and Equation (7.3) gives a

large penalty. Second is when a historically dissimilar neighbor remains dissimilar. This is

expected and Equation (7.3) gives a small value accordingly.

Continuing the previous examples, consider the outlier scores of Table 7.3. OS(1, 2) =

|1.9− 1|+ |1.9− 1|+ |1.0− 0| = 2.8. Table 7.4 shows the outlier scores of edges on all days.

On Day 2, edge 4 has the highest outlier score. Intuitively, this is sensible because it became

121

similar to the other edges while it was not on the previous day.

Edge Outlier Scores
Day 1 Day 2 Day 3

1 2.0 2.8 3.4
2 2.0 2.8 3.0
3 2.0 2.8 3.0
4 0.0 3.0 3.0

Table 7.4: Outlier Scores

7.3 The TOD Framework

The discussion so far has been limited to only road segments as the target of outlier detection.

However, analysis can also be on higher level concepts such as sequences of segments or entire

moving object trajectories. Figure 7.6 shows the overall flow of data in TOD. Clear boxes

show data and shaded boxes show computation modules. The framework is general in the

sense that it can operate on any type of spatiotemporal data, feature space, and distance

function.

For example, suppose one created “virtual edges” between the starting and ending loca-

tions of all trajectories. Semantically, these edges would represent the general flow of people

in a city. There are, of course, temporal patterns in such data. Consider the number of

people who drive to work in downtown from the various suburbs everyday. These flows are

very stable day-to-day because people tend to goto work during the same time everyday and

use the same routes. A slight outlier in such data is indicative of some anomaly in the city

traffic.

On a lesser scale, one could also analyze sub-trajectories. Instead of single road segments

or whole trajectories, sequences of road segments could be analyzed for anomalies in pop-

ular sub-routes. The key point is that no matter at which level of abstraction the original

122

Segment
Sequences

Periodic Temporal Neighborhood Vector Construction

tmt2 t3 t4t1 ...

Temporal Outlier Detection

Moving
Object
Data

Road
Segments

Whole
Trajectories

Figure 7.6: TOD Data Flow

input data is processed, the overall TOD framework remains the same. The output will

automatically match the abstraction level of the input.

7.3.1 Complexity

The runtime of TOD is evenly divided per time step; thus complexity with respect to time is

linear. At each time step, two processing steps are needed. First is to generate the feature

values for each point (i.e., road segment, path, etc.) in the dataset. This entails processing

all the traffic data once and is a linear time operation. Second is to compute the pairwise

similarities between all points in order to update the temporal neighborhood vectors. If

there are N points, the runtime cost at each time step is then O(N2).

7.3.2 Setting Parameters

There are four parameters to set in TOD. First is θ, which dictates the threshold of instan-

taneous similarity. For many features, this is easy to set. For example, if the feature is

123

speed and the similarity measure is L-∞, ± 5MPH could be reasonable choice. Because

θ is directly related to the real world measure, it is quite intuitive to set. Further, the θ

parameter could actually be eliminated if it is incorporated into Equations (7.1) and (7.3)

directly. That is, the reward and penalty equations could operate on the distance between

edges directly. This seems attractive because it eliminates a parameter, but it can be very

tricky to alter the equations. Because θ is so intuitive to set directly, the choice was made

to retain it.

The other three parameters are related to the temporal neighborhood vector updating

rules, specifically α1, α2 and β. A small α1 decreases reward quickly as existing similarity

grows. Semantically, this reduces the impact of history because a long period of instantaneous

similarity does not equal a big reward as time goes on. A large β increases penalty quickly

as existing similarity grows. This increases the impact of history because a long period of

instantaneous similarity equals a large penalty. It also serves the following function. Suppose

two edges have been historically similar for a long time. Then, due to some structural change,

the similarity is broken permanently. If the penalty for this is small, it would take a long time

to “undo” the existing similarity. This would cause the system to unnecessarily report the

outlier for a long time. With a reasonable β, however, it would be quickly erased. The key is

to set β such that history is erased gracefully and not too quickly. Figure 7.7 shows a sample

timeline of similarity with α1 = 0.95, α2 = 3, and β = 1.05. In the figure, it takes roughly

10 time steps to undo 40 time steps of continuous instantaneous similarity. In experiments,

this was found to be reasonable, but the exact settings depend on the application and also

the importance of history.

7.3.3 Other Applications

One possible extension of the TOD framework is application to possibly non-spatiotemporal

data. At its core, temporal relationships between objects form the basis for outlier detection.

124

 30

 25

 20

 15

 10

 5

 0
 50 40 30 20 10 0

T
em

po
ra

l S
im

ila
rit

y
V

al
ue

Time

Figure 7.7: Temporal Similarity

Social networks that evolve temporally is a possible application for this data. Instead of

measuring the relevant measures on the actors, temporal relationships between the actors

can be studied to discover outliers that suddenly change their ties. Sensor networks is another

good application. In many cases, events will cause entire groups of sensor readings to shift.

This maybe understood as normal because the event is expected. Thus, it maybe more

appropriate to detect temporal outlier behavior within groups of sensors.

Another attractive feature of the TOD framework is its extensibility to streaming data.

Every road segment maintains its own temporal neighborhood vector, and they can be

updated on-the-fly with new incoming data. Because the update process is relatively efficient

at O(N2) per time step, running the outlier detection algorithm periodically is reasonable.

Furthermore, there is a slight optimization possible if only the top-k outliers are seeked at

each time step. Because the update formulas for reward and penalty are known a priori, it

is possible to bound them without looking at the data. Then, if only the top k outliers are

seeked at a new time step, the bounds can be used to reduce the number of computations.

However, these bounds get looser over time if no update takes place. At some point in time,

they will become too big to require an update, which entails processing all the data again if

the true answer is desired. As a result, the amortized runtime at each time period will still

approach the original.

125

7.4 Experiments

Real world moving object data was used to test the effectiveness of TOD. 24 days of moving

taxicab data in the San Francisco area were collected during the month of July in 2006. In

all, there were over 800,000 separate trips, 33 million road segment traversals, and 100,000

distinct road segments. Data was recorded at the second level for time and also includes the

speed on each road segment. In all experiments, α1 is set to 1.1, α2 is set to 0, and β is set

to 0.95.

7.4.1 Outliers

To test the effectiveness of TOD, a variety of feature spaces and parameter settings are used

to detect outliers in the real world data. A few examples are shown here. Figures 7.8 and

7.9 show two outliers with respect to speed. The feature space includes eight features, one

for every 3-hour span of the day (i.e., 12am–3am, 3am–6am, etc.). Figure 7.8 shows the

average speed of vehicles on one segment of 14th St. in San Francisco during 6am–9am over

the course of several days. Also shown is the average speed of vehicles on neighboring road

segments, which are road segments in the temporal neighborhood vector of 14th St. with

the top 25% largest absolute changes (counting both reward and penalty) on the day of the

outlier. In Figure 7.8, 14th St. has 876 such neighbors. Their average is very stable in time:

16MPH constantly and has very small deviations on each day: less than 0.2. This stability

is not surprising due to the large number of road segments. On July 11th, the average speed

on 14th St. rises significantly compared to its similar neighbors and is caught as an outlier.

Figure 7.9 shows another similar example with a different road segment.

Figure 7.10 shows an outlier with respect to load (i.e., count) of vehicles. The neighboring

segments have a stable trend (427 neighbors with daily standard deviation under 1.0) from

July 3rd to July 13th while the outlier road segment’s load increases significantly on July

126

 40

 30

 20

 10
July 11July 9July 7July 5July 3

S
pe

ed

Time

Outlier Road Segment
Similar Neighbors Average

Figure 7.8: Speed Outlier (14th St.)

 40

 30

 20

 10
July 15July 13July 11July 9July 7July 5July 3

S
pe

ed

Time

Outlier Road Segment
Similar Neighbors Average

Figure 7.9: Speed Outlier (Webster Ave.)

9th and 13th.

 40

 30

 20

 10

July 13July 11July 9July 7July 5July 3

Lo
ad

Time

Outlier Road Segment
Similar Neighbors Average

Figure 7.10: Load Outlier

Figure 7.11 shows another outlier with respect to load. In this case, the cause is opposite

than that of Figure 7.10. The load of the neighbors (107 of them) increases on July 6th and

7th (weekend) while the road segment in question remains stable. This is rather strange

because the road segment is very similar to its neighbors on weekdays. And yet, it did not

receive the weekend bump in load due to some unknown reason.

The basis for consistency comparisons in TOD are historical similarities between road

127

 150

 100

 50
July 11July 9July 7July 5July 3

Lo
ad

Time

Outlier Road Segment
Similar Neighbors Average

Figure 7.11: Load Outlier

segments. In contrast to using direct historical trends in the measure itself, this is more

powerful since sometimes trends may not exist in the measure but do in the similarities.

Figure 7.12 shows a non-outlier in TOD. On July 7th and 8th, the load increases significantly

when compared to previous data. A näıve method is likely to report these outliers. But when

compared to its historically similar neighbors, the increase is global and rather normal. Those

two days are actually weekend days (Friday and Saturday) and the universal increase in load

is reasonable.

 150

 100

 50

July 9July 7July 5July 3

Lo
ad

Time

Non-Outlier Road Segment
Similar Neighbors Average

Figure 7.12: Non-Outlier

7.4.2 Näıve Outlier Detection

One of the advantages of TOD is its robustness to global changes, which could fool outlier

detection systems that only rely on the historical data of the single road segment. In this

section, such a system is implemented and tested on the real world data. For every road

segment, a running average of daily average speed is maintained. Then, on each day, the

128

absolute difference between that day’s average speed and the running average is the outlier

score.

Figure 7.13 shows one particular outlier found through this algorithm. The first graph

shows the running average of the road segment in question as a function of time. On each

day, the running average is the average of all previous day’s average speeds excluding the

current day. The second graph shows the average speed on every day, ignoring all previous

history. The näıve algorithm simply compares the current day’s average vs. the running

average. In this case, it is obvious from this comparison that the speed on July 7th and 8th

deviate significantly from the running average, and thus an outlier is reported. But, this

turns out to be incorrect when historically similar neighbors are considered. The third graph

in Figure 7.13 shows the average daily speeds of historically similar neighbors (within 5MPH

on every day before July 8th). From this graph, it can be seen that the entire set of road

segments has an increase in speed on July 7th and 8th. A closer examination reveals these

are actually weekend days. Thus, the more plausible explanation for the rise is that there

are less cars on certain roads (interstate highway I-880 in this example) on the weekends

and speed naturally rises on all of them. As a result, this particular road segment is not

an outlier. This conclusion would not have been possible had similar neighbors not been

included in the analysis.

Figure 7.14 shows another example of a false outlier reported by the näıve method.

Again, there is an increase in speed (July 14th, 2006, another weekend) when compared to

the running average of the road segment itself. However, when the neighbors are taken into

consideration, it seems rather normal.

7.4.3 Efficiency

Finally, the efficiency of TOD is tested. Figure 7.15 shows the running times of TOD as

a function of the number of days processed. There was a total of 33 million road segment

129

 70

 65

 60

 55

July 8July 7July 6July 5July 4July 3

A
ve

ra
ge

 S
pe

ed

Time

Running Average

 70

 65

 60

 55

July 8July 7July 6July 5July 4July 3

A
ve

ra
ge

 S
pe

ed

Time

Daily Average

 70

 65

 60

 55

July 8July 7July 6July 5July 4July 3

A
ve

ra
ge

 S
pe

ed

Time

Neighbor Average

Figure 7.13: Average Speeds of I-880

traversals spread throughout 24 days, which makes an average of roughly 1.4 million road

segment traversals per day. As the figure shows, processing these traversals and updating the

temporal neighborhood vectors is a linear time operation with respect to the number of days.

There are two curves shown for two different settings of the parameter θ, the threshold for

instantaneous similarity. In both curves, the features on the road segments represent speed

and θ sets the maximum difference in the L-∞ distance. As expected, when θ is equal to 10,

running time increases because there are more neighbors to process at each time step.

Figure 7.16 shows a more extensive experiment comparing running time vs. θ. Features

related to speed are used in the experiment, and θ is the maximum miles-per-hour differ-

ence in the L-∞ distance. All 24 days of traffic was processed. The same trend in Figure

7.15 presents itself. As θ increases, the number of instantaneously similar neighbors to be

processed at each time step increases and thus causes a longer running time.

130

 70

 65

 60

 55

July 14July 12July 9July 6July 3

A
ve

ra
ge

 S
pe

ed

Time

Running Average

 70

 65

 60

 55

July 14July 12July 9July 6July 3

A
ve

ra
ge

 S
pe

ed

Time

Daily Average

 70

 65

 60

 55

July 14July 12July 9July 6July 3

A
ve

ra
ge

 S
pe

ed

Time

Neighbor Average

Figure 7.14: Average Speeds of San Jose Ave.

 10000

 8000

 6000

 4000

 2000

 0
2420151051

R
un

tim
e

(s
ec

on
ds

)

Number of Days Processed

Neighborhood Radius = 5
Neighborhood Radius = 10

Figure 7.15: Efficiency vs. Number of Days

 6000

 5000

 4000

 3000
 10 8 6 4 2

R
un

tim
e

(s
ec

on
ds

)

Maximum Neighborhood Radius

TODD Running Time

Figure 7.16: Efficiency vs. Neighborhood Radius

131

Chapter 8

Conclusion

In this thesis, we have explored the possibility of data mining in spatiotemporal data, specif-

ically moving objects. We reviewed current work in the area of indexing, query processing,

clustering, data mining and more. Though there has been a good amount of work in this

area, some in depth, there is still a dearth of attention on high-level problems. Most work

focus on traditional spatiotemporal data, not moving objects, where trajectories are formed.

More importantly, most of the efforts have been put into fundamental problems such as in-

dexing or query processing. Such problems are very important and their solutions form very

important building blocks to higher level problems. At this point in research, the field of

moving objects research has accumulated enough robust building blocks such that one can

finally look towards higher level problems and solutions.

Figure 8.1 shows again a summary of our work. In the middle layer, we present two studies

in the pre-processing stage. One of them summarizes trajectories for aggregate analysis and

the other studies sampled trajectories in a multidimensional space. Next, we present studies

in the analysis of moving objects, specifically towards the goal of outlier detection. We

explored three types of outliers. The first addresses outlier objects in free moving form. The

second addresses subspace outliers in a multidimensional space. And the third addresses

traffic outliers in a road network.

In the figure, we also show two major directions for future work. First is the combination

of moving object data with other data sources. Most current studies only focus on the

moving objects themselves. This makes sense given the relatively young age of the field. But

132

Sampled
TrajectoriesTrajectories

Trajectory
Patterns

Subspace
Outliers

Moving
Object
Outliers

Traffic
Outliers

Moving
Object
Data

Other
Data

Figure 8.1: Thesis Framework & Future Direction

as better technologies develop and algorithms mature, one will soon realize that the world

includes many additional things in addition to the moving objects. The linkage between

them can often be more interesting than the objects alone. For example, as people (being

tracked by their GPS-embedded cellphones) move throughout a shopping mall, the tracking

of their movements can be linked to sales records. This linkage can be used to predict

future sales numbers based on people movements. On a small time scale, e.g., daily, this

might seem trivial and useless. However, on a larger scale, this offers tremendous analytical

information. Every quarter, a massive number of stock analysts descend on sales data in

order to predict quarterly earning results. Being accurate can be the difference in millions or

billions of dollars in stock sales. Often, these analysts are rather blind in their observation

because the corporations do not release enough information. The analysts can only rely

on small-sampled information to predict trends. However, given the tracking of people in

stores, they can possibly build very accurate predictive models for quarterly earnings and

133

stock purchasing decisions.

Another direction for future research is the feedback loop between the outputs of analysis

modules and the moving objects themselves. Recently, there has been much development

in two-way GPS devices for the mass public. That is, in addition to receiving information

about the location and possibly traffic information, the GPS in a vehicle can also send back

information about itself. More specifically, it can report back its location, its historical

moving records, and its current speed. With many users reporting back such information,

a collaborative filtering type of model emerges. Vehicles on the road receive, in real time,

information about other vehicles and can adjust accordingly, in real time. For example,

they could learn that a traffic accident has just occurred at some road segment and will

then use a detour to avoid it. One can quickly see another problem that comes out of this.

Road capacities are not infinite, if many vehicles all move to the same alternative location to

avoid the traffic jam, they will just create another traffic jam! In these scenarios, one quickly

realizes that game theory is the name of the game. That is, one has to consider the effect of a

single player’s actions on other players as well as the reverse. In contrast to traditional game

theory, this game is much more complicated because actions are not instanteneous. They

are implicit in the movements. This also gives some delay to the calculation of the game’s

output, which can lead to many interesting problems and solutions. With more and more

moving objects being tracked and analyzed in the real world, we believe this is a field sure

to receive much attention in both academia and industry in the near future, if not already!

134

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proc. 2000 ACM
SIGMOD-SIGACT-SIGART Symp. Principles of Database Systems (PODS’00), pages
175–186, Dallas, TX, May 2001.

[2] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Proc. 2001
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’01), pages 37–46, Santa
Barbara, CA, May 2001.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering
of high dimensional data for data mining applications. In Proc. 1998 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’98), pages 94–105, Seattle, WA, June 1998.

[4] V. T. Almeida and R. H. Guting. Indexing the trajectories of moving objects in net-
works. In Proc. 2004 Int. Conf. on Scientific and Statistical Database Management
(SSDBM’04), Santorini Island, Greece, June 2004.

[5] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons, 1994.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. In Proc. 1990 ACM SIGMOD
Int. Conf. Management of Data (SIGMOD’90), pages 322–331, Atlantic City, NJ, June
1990.

[7] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest neighbor and reverse
nearest neighbor queries for moving objects. In Proc. IDEAS, pages 44–53, 2002.

[8] S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree: An efficient and robust access
method for points and rectangles. In Proc. 1996 Int. Conf. Very Large Data Bases
(VLDB’96), pages 28–39, Bombay, India, Sept. 1996.

[9] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes.
In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pages
359–370, Philadelphia, PA, June 1999.

[10] T. Brinkhoff. A framework for generating network-based moving objects. In GeoInfor-
matica, 2002.

135

[11] I. V. Cadez, S. Gaffney, and P. Smyth. A general probabilistic framework for clustering
individuals and objects. In Proc. 2000 ACM SIGKDD Int. Conf. Knowledge Discovery
in Databases (KDD’00), pages 140 – 149, Boston, MA, Aug. 2000.

[12] Huiping Cao, Nikos Mamoulis, and David W. Cheung. Mining frequent spatio-temporal
sequential patterns. In Proc. 2005 Int. Conf. on Data Mining (ICDM’05), Houston, TX,
Nov. 2005.

[13] Jidong Chen, Xiaofeng Meng, Yanyan Guo, and Zhen Xiao. Update-efficient indexing
of moving objects in road networks. In Third Workshop on Spatio-Temporal Database
Management (STDBM’06), 2006.

[14] L. Chen, M. T. Ozsu, and V. Oria. Robust and fast similarity search for moving
object trajectories. In Proc. 2005 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’05), pages 491–502, Baltimore, Maryland, June 2005.

[15] Yun Chen and Jignesh M. Patel. Efficient evaluation of all-nearest-neighbor queries. In
Proc. 2007 Int. Conf. Data Engineering (ICDE’07), Istanbul, Turkey, April 2007.

[16] R. Cheng, Y. Xia, S. Prabhakar, and R. Shah. Change tolerant indexing for constantly
evolving data. In Proc. 2005 Int. Conf. Data Mining (ICDE’05), Tokyo, Japan, April
2005.

[17] H. D. Chon, D. Agrawal, and A. E. Abbadi. Range and knn query processing for moving
objects in grid model. In ACM/Kluwer MONET, pages 401–412, 2003.

[18] François Denis. Pac learning from positive statistical queries. In Algorithmic Learning
Theory: 9th International Conference, ALT’98, Otzenhausen, Germany, October 1998,
Otzenhausen, Germany, 1998.

[19] Yang Du, Donghui Zhang, and Tian Xia. The optimal-location query. In Proc. 2005
Int. Symp. Spatial and Temporal Databases (SSTD’05), 2005.

[20] E. Frentzos. Indexing objects moving on fixed networks. In Proc. 2003 Int. Symp.
Spatial and Temporal Databases (SSTD’03), pages 289–305, Santorini Island, Greece,
July 2003.

[21] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression models. In
Proc. 1999 Int. Conf. Knowledge Discovery and Data Mining (KDD’99), pages 63–72,
1999.

[22] Fosca Giannotti, Mirco Nanni, Dino Pedreschi, and Fabio Pinelli. Trajectory pattern
mining. In Proc. 2007 Int. Conf. Knowledge Discovery and Data Mining (KDD’07),
San Jose, CA, Aug. 2007.

136

[23] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational oper-
ator generalizing group-by, cross-tab and sub-totals. In Proc. 1996 Int. Conf. Data
Engineering (ICDE’96), pages 152–159, New Orleans, Louisiana, Feb. 1996.

[24] G. H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.

[25] A. Guttman. R-tree: A dynamic index structure for spatial searching. In Proc. 1984
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’84), pages 47–57, Boston,
MA, June 1984.

[26] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. In Journal
of Machine Learning Research, volume 3, pages 1157–1182, 2003.

[27] W. L. Hays. Statistics. CBS College Publishing, New York, NY, 1981.

[28] H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring continuous spatial
queries over moving objects. In Proc. 2005 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD’05), pages 479–490, Baltimore, Maryland, June 2005.

[29] S. Hwang, K. Kwon, S. K. Cha, and B. S. Lee. Performance evaluation of main-memory
r-tree variants. In Proc. 2003 Int. Symp. Spatial and Temporal Databases (SSTD’03),
pages 10–27, Santorini Island, Greece, July 2003.

[30] G. S. Iwerks, H. Samet, and K. Smith. Continuous k-nearest neighbor queries for
continuously moving points with updates. In Proc. 2003 Int. Conf. Very Large Data
Bases (VLDB’03), Berlin, Germany, Sept. 2003.

[31] G. S. Iwerks, H. Samet, and K. Smith. Maintenance of spatial semijoin queries on
moving points. In Proc. 2004 Int. Conf. Very Large Data Bases (VLDB’04), Toronto,
Canada, Aug. 2004.

[32] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient b+-tree based indexing
of moving objects. In Proc. 2004 Int. Conf. Very Large Data Bases (VLDB’04), pages
768–779, Toronto, Canada, Aug. 2004.

[33] Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clusters
in spatio-temporal data. In Proc. 2005 Int. Symp. Spatial and Temporal Databases
(SSTD’05), pages 364–381, 2005.

[34] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using fractals. In Proc.
1994 Int. Conf. Very Large Data Bases (VLDB’94), pages 500–509, Santiago, Chile,
Sept. 1994.

[35] E. Keogh, J. Lin, and A. Fu. Hot sax: Efficiently finding the most unusual time series
subsequence. In Proc. 2005 Int. Conf. on Data Mining (ICDM’05), pages 226–233,
Houston, TX, Nov. 2005.

137

[36] E. J. Keogh and M. J. Pazzani. An enhanced representation of time series which allows
fast and accurate classification, clustering and relevance feedback. In Proc. 1998 Int.
Conf. Knowledge Discovery and Data Mining (KDD’98), pages 239–243, New York,
NY, Aug. 1998.

[37] K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimensional index trees for main
memory access. In Proc. 2001 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’01), pages 139–150, Santa Barbara, CA, May 2001.

[38] E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets.
In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98), pages 392–403, New York,
NY, Aug. 1998.

[39] G. Kollios, D. Gunopulos, and V.J. Tsotras. On indexing mobile objects. In Proc. 18th
ACM Symp. Principles of Database Systems (PODS’99), Philadelphia, PA, May 1999.

[40] G. Kollios, D. Papadopoulos, D. Gunopulos, and V.J. Tsotras. Indexing mobile objects
using dual transformations. In The VLDB Journal, 2005.

[41] K. Koperski and J. Han. Discovery of spatial association rules in geographic information
databases. In Proc. 1995 Int. Symp. Large Spatial Databases (SSD’95), pages 47–66,
Portland, Maine, Aug. 1995.

[42] Vlaho Kostov, Jun Ozawa, Mototaka Yoshioka, and Takahiro Kudoh. Travel destination
prediction using frequent crossing pattern from driving history. In Proc. 8th Int. IEEE
Conf. Intelligent Transportation Systems, pages 970–977, Vienna, Austria, Sept. 2005.

[43] Iosif Lazaridis, Kriengkrai Porkaew, and Sharad Mehrotra. Dynamic queries over mobile
objects. In Proc. 2002 Int. Conf. Extending Database Technology (EDBT’02), Prague,
Czech, March 2002.

[44] J. Lee, J. Han, and K. Whang. Trajectory clustering: A partition-and-group framework.
In Proc. 2007 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’07), Beijing,
China, June 2007.

[45] Jae-Gil Lee, Jiawei Han, and Xiaolei Li. Trajectory outlier detection: A partition-and-
detect framework. In Proc. 2008 Int. Conf. Data Mining (ICDE’08), Cancun, Mexico,
April 2008.

[46] H. Li, D. Agrawal, A. E. Abbadi, and M. Riedewald. Exploiting the multi-append-only-
trend property of historical data in date warehouses. In Proc. 2003 Int. Symp. Spatial
and Temporal Databases (SSTD’03), Santorini Island, Greece, July 2003.

[47] Xiaolei Li and Jiawei Han. Mining approximate top-k subspace anomalies in multi-
dimensional time-series data. In Proceedings of the 33rd International Conference on
Very Large Data Bases (VLDB’07), Vienna, Austria, Sept. 2007.

138

[48] Xiaolei Li, Jiawei Han, and Hector Gonzalez. High-dimensional OLAP: A minimal
cubing approach. In Proc. 2004 Int. Conf. Very Large Data Bases (VLDB’04), pages
528–539, Toronto, Canada, Aug. 2004.

[49] Xiaolei Li, Jiawei Han, and Sangkyum Kim. Motion-alert: Automatic anomaly detection
in massive moving objects. In Proceedings of the 2006 IEEE Intelligence and Security
Informatics Conference (ISI’06), San Diego, CA, May 2006.

[50] Xiaolei Li, Jiawei Han, Sangkyum Kim, and Hector Gonzalez. Roam: Rule- and motif-
based anomaly detection in massive moving object data sets. In Proceedings of the
Seventh SIAM International Conference on Data Mining (SDM’07), Minneapolis, MN,
April 2007.

[51] Xiaolei Li, Jiawei Han, Jae-Gil Lee, and Hector Gonzalez. Traffic density-based discovery
of hot routes in road networks. In Proc. 2007 Int. Symp. Spatial and Temporal Databases
(SSTD’07), pages 441–459, Boston, MA, July 2007.

[52] Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, and Yizhou Sun. Sampling cube: A
framework for statistical olap over sampling data. In Proc. 2008 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’08), Vancouver, Canada, June 2008.

[53] Xiaolei Li, Zhenhui Li, Jiawei Han, and Jae-Gil Lee. Temporal outlier detection in
vehicle traffic data. In submission, 2008.

[54] Lin Liao, Dieter Fox, and Henry Kautz. Learning and inferring transportation routines.
In Proc. 2004 Nat. Conf. Artificial Intelligence (AAAI’04), 2004.

[55] D. Lin, C.S. Jensen, S. Saltenis, and B.C. Ooi. Efficient indexing of the historical,
present, and future positions of moving objects. In 6th International Conference on
Mobile Data Management (MDM’05), 2005.

[56] H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An enabling technique.
Data Mining and Knowledge Discovery, 6:393–423, 2002.

[57] M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: Scalable incremental processing of
continuous queries in spatio-temporal databases. In Proc. 2004 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’04), Paris, France, June 2004.

[58] M. F. Mokbel, X. Xiong, W. G. Aref, S. E. Hambrusch, S. Prabhakar, and M. A.
Hammad. Place: A query processor for handling real-time spatio-temporal data streams.
In Proc. 2004 Int. Conf. Very Large Data Bases (VLDB’04), Toronto, Canada, Aug.
2004.

[59] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient olap operations in spatial
data warehouses. In Proc. 2001 Int. Symp. Spatial and Temporal Databases (SSTD’01),
Redondo Beach, CA, July 2001.

139

[60] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: A
review. SIGKDD Explorations, 6:90–105, 2004.

[61] J. M. Patel, Y. Chen, and V. P. Chakka. Stripes: An efficient index for predicted trajec-
tories. In Proc. 2004 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’04),
Paris, France, June 2004.

[62] T. B. Pedersen and N. Tryfona. Pre-aggregation in spatial data warehousess. In Proc.
2001 Int. Symp. Spatial and Temporal Databases (SSTD’01), Redondo Beach, CA, July
2001.

[63] D. Pfoser and C. S. Jensen. Indexing of network constrained moving objects. In GIS
’03: Proceedings of the 11th ACM international symposium on Advances in geographic
information systems, pages 25–32, New York, NY, USA, 2003. ACM Press.

[64] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying mobile objects in spatio-temporal
databasess. In Proc. 2001 Int. Symp. Spatial and Temporal Databases (SSTD’01), Re-
dondo Beach, CA, July 2001.

[65] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proc. 1993
European Conf. Machine Learning, pages 3–20, Vienna, Austria, 1993.

[66] K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos. Fast nearest-neighbor query
processing in moving object databases. In GeoInfomatica, pages 113–137, 2003.

[67] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proc. 1995
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’95), pages 71–79, San Jose,
CA, May 1995.

[68] S. Saltenis and C. Jensen. Indexing of moving objects for location-based services. In
Proc. 2002 Int. Conf. Data Engineering (ICDE’02), pages 463–472, San Fransisco, CA,
April 2002.

[69] S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez. Indexing the positions of contin-
uously moving objects. In Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’00), pages 331–342, Dallas, TX, May 2000.

[70] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A dynamic index for multi-
dimensional objects. In Proc. 1987 Int. Conf. Very Large Data Bases (VLDB’87), pages
3–11, Brighton, England, 1987.

[71] S. Shekhar and Y. Huang. Discovering spatial co-location patterns: A summary of
results. In Proc. 2001 Int. Symp. Spatial and Temporal Databases (SSTD’01), Redondo
Beach, CA, July 2001.

140

[72] C. Sun, D. Agrawal, and A. E. Abbadi. Hardware acceleration for spatial selections and
joins. In Proc. 2003 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’03),
San Diego, CA, June 2003.

[73] J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about the past, the present, and
the future in spatio-temporal databases. In Proc. 2004 Int. Conf. Data Engineering
(ICDE’04), pages 202–213, Boston, MA, March 2004.

[74] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias. Spatio-temporal aggregation
using sketches. In Proc. 2004 Int. Conf. Data Engineering (ICDE’04), Boston, MA,
March 2004.

[75] Y. Tao, D. Papadias, and C. Faloutsos. Approxiate temporal aggregation. In Proc. 2004
Int. Conf. Data Engineering (ICDE’04), Boston, MA, March 2004.

[76] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search. In Proc. 2002
Int. Conf. Very Large Data Bases (VLDB’02), pages 287–298, Hong Kong, China, Aug.
2002.

[77] Y. Tao, D. Papadias, and J. Sun. The tpr*-tree: An optimized spatio-temporal ac-
cess method for predictive queries. In Proc. 2003 Int. Conf. Very Large Data Bases
(VLDB’03), pages 790–801, Berlin, Germany, Sept. 2003.

[78] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. On the generation of spatiotempo-
ral datasets. In 6th Int. Symposium on Spatial Databases (SSD’99), Hong Kong, China,
July 1999.

[79] I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal patterns. In Proc.
2001 Int. Symp. Spatial and Temporal Databases (SSTD’01), pages 425–442, Redondo
Beach, CA, July 2001.

[80] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering similar multi-
dimensional trajectories. In Proc. 2002 Int. Conf. Data Engineering (ICDE’02), pages
673–684, San Fransisco, CA, April 2002.

[81] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t most influential spatial
sites. In Proc. 2005 Int. Conf. Very Large Data Bases (VLDB’05), Trondheim, Norway,
Aug. 2005.

[82] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing iceberg cubes by
top-down and bottom-up integration. In Proc. 2003 Int. Conf. Very Large Data Bases
(VLDB’03), Berlin, Germany, Sept. 2003.

[83] X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases. In Proc. 2005 Int. Conf. Data
Mining (ICDE’05), Tokyo, Japan, April 2005.

141

[84] Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. Disk aware discord dis-
covery: Finding unusual time series in terabyte sized datasets. In Proc. 2007 Int. Conf.
on Data Mining (ICDM’07), Omaha, NE, Sept. 2007.

[85] X. Yin and J. Han. CPAR: Classification based on predictive association rules. In Proc.
2003 SIAM Int. Conf. Data Mining (SDM’03), pages 331–335, San Fransisco, CA, May
2003.

[86] M. L. Yiu, Y. Tao, and N. Mamoulis. The bdual-tree: Indexing moving objects by space
filling curves in the dual space. In The VLDB Journal, 2006.

[87] Man Lung Yiu, Xiangyuan Dai, Nikos Mamoulis, and Michail Vaitis. Top-k spatial
preference queries. In Proc. 2007 Int. Conf. Data Engineering (ICDE’07), Istanbul,
Turkey, April 2007.

[88] J. S. Yoo and S. Shekhar. A partial join approach to mining co-location patterns. In
GIS’04, Washington, D.C., Nov. 2004.

[89] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries over moving
objects. In Proc. 2005 Int. Conf. Data Mining (ICDE’05), Tokyo, Japan, April 2005.

[90] H. Zen, K. Tokuda, and T. Kitamura. A viterbi algorithm for a trajectory model derived
from hmm with explicit relationship between static and dynamic features. In IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, 2004. Proceedings.
(ICASSP ’04), volume 1, pages 837–40, 2004.

[91] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. Lee. Location-based spatial queries.
In Proc. 2003 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’03), pages
443–454, San Diego, CA, June 2003.

[92] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method
for very large databases. In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’96), pages 103–114, Montreal, Canada, June 1996.

[93] X. Zhang, N. Mamoulis, D. W. Cheung, and Y. Shou. Fast mining of spatial collocations.
In Proc. 2004 Int. Conf. Knowledge Discovery and Data Mining (KDD’04), pages 384–
393, Seattle, WA, Aug. 2004.

142

Author’s Biography

Xiaolei Li was born on December 2nd, 1980 in the city of Shanghai, China. At the age of

11, he moved to Omaha, NE in the United States. In August of 1999, Xiaolei started his un-

dergraduate studies in Computer Science at the University of Illinois at Urbana-Champaign.

He graduated in May of 2002 and continued with his Masters studies starting in August of

2002. After receiving his Masters in Computer Science in May of 2004, Xiaolei continued

at University of Illinois at Urbana-Champaign for his Doctorate of Philosophy in Computer

Science under the guidance of Prof. Jiawei Han. Following his completion of the Ph.D.,

Xiaolei will join Microsoft to further his research.

143

