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ABSTRACT
With the advent of RFID (Radio Frequency Identifica-
tion) technology, manufacturers, distributors, and re-
tailers will be able to track the movement of individual
objects throughout the supply chain. The volume of
data generated by a typical RFID application will be
enormous as each item will generate a complete history
of all the individual locations that it occupied at ev-
ery point in time, possibly from a specific production
line at a given factory, passing through multiple ware-
houses, and all the way to a particular checkout counter
in a store. The movement trails of such RFID data
form gigantic commodity flowgraph representing the lo-
cations and durations of the path stages traversed by
each item. This commodity flow contains rich multi-
dimensional information on the characteristics, trends,
changes and outliers of commodity movements.

In this paper, we propose a method to construct a
warehouse of commodity flows, called flowcube. As in
standard OLAP, the model will be composed of cuboids
that aggregate item flows at a given abstraction level.
The flowcube differs from the traditional data cube in
two major ways. First, the measure of each cell will
not be a scalar aggregate but a commodity flowgraph
that captures the major movement trends and signifi-
cant deviations from the superset of objects in the cell.
Second, each flowgraph itself can be viewed at multi-
ple levels by changing the level of abstraction of path
stages. In this paper, we motivate the importance of the
model, and present an efficient method to compute it by
(1) performing simultaneous aggregation of paths to all
interesting abstraction levels, (2) pruning low support
path segments along the item and path stage abstrac-
tion lattices, and (3) compressing the cube by removing
rarely occurring cells, and cells whose commodity flows
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can be inferred from higher level cells.

1. INTRODUCTION
With the rapid progress of radio frequency identifi-

cation (RFID) technology, it is expected that in a few
years, RFID tags will be placed at the package or indi-
vidual item level for many products. These tags will be
read by a transponder (RFID reader), from a distance
and without line of sight. One or more readings for a
single tags will be collected at every location that the
item visits and therefore enormous amounts of object
tracking data will be recorded. This technology can be
readily used in applications such as item tracking and
inventory management, and thus holds a great promise
to streamline supply chain management, facilitate rout-
ing and distribution of products, and reduce costs by
improving efficiency. However, the enormous amount
of data generated in such applications also poses great
challenges on efficient analysis.

Let us examine a typical such scenario. Consider a
nationwide retailer that has implemented RFID tags
at the pallet and item level, and whose managers need
to analyze the movement of products through the en-
tire supply chain, from the factories producing items, to
international distribution centers, regional warehouses,
store backrooms, and shelves, all the way to checkout
counters. Each item will leave a trace of readings of
the form (EPC, location, time) as it is scanned by the
readers at each distinct location1. If we consider that
each stores sells tens of thousands of items every day,
and that each item may be scanned hundreds of times
before being sold, the retail operation may generate sev-
eral terabytes of RFID data every day. This information
can be analyzed from the perspective of paths and the
abstraction level at which path stages appear, and from
the perspective of items and the abstraction level at
which the dimensions that describe an item are studied.
Path view. The set of locations that an item goes
through forms a path. Paths are interesting because
they provide insights into the patterns that govern the
flow of items in the system. A single path can be pre-
sented in different ways depending on the person looking
at the data. Figure 1 presents a path (seen in the middle
of the figure) aggregated to two different abstraction lev-

1Electronic Product Code (EPC) is a unique identifier
associated with each RFID tag



els, the path at the top of the figure shows the individual
locations inside a store, while it collapses locations that
belong to transportation. This view may be interest-
ing to a store manager, that requires detailed transition
information within the store. The path at the bottom
of the figure on the other hand, collapses locations that
belong to stores, and keeps individual locations that be-
long to transportation. This view may be interesting to
transportation manager in the company.

dist. center truck shelf checkout

transportation shelf checkout

dist. center truck store

Store View:

Transportation View:

backroom
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Figure 1: Path views: The same path can be
seen at two different abstraction levels.

Item view. An orthogonal view into RFID commodity
flows is related to items themselves. This is a view much
closer to traditional data cubes. An item can have a set
of dimensions describing its characteristics, e.g., prod-
uct, brand, manufacturer. Each of these dimensions has
an associated concept hierarchy. Figure 2 presents the
different levels at which a single item may be looked at
along the product dimension. It is possible that a high
level manager at a retailer will only look at products at
the category level. But that the manager for a particu-
lar line of products may look at individual items in that
line.
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Clothing
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Type Level

Category Level

...

Figure 2: Item view: A product can be seen at
different levels of abstraction

The key challenge in constructing a data cube for a
database of RFID paths is to devise an efficient method
to compute summaries of commodity flows for those
item views and path views that are interesting to the
different data analysts utilizing the application. Full
materialization of such data cube would be unrealistic
as the number of abstraction levels is exponential in the

number of dimensions describing an item and describing
a path.

In this paper we propose flowcube, a data cube model
that summarizes commodity flows at multiple levels of
abstraction along the item view and the path view of
RFID data. This model will provide answers to ques-
tions such as:

1. What are the most typical paths, with average dura-
tion at each stage, that shoes manufactured in China
take before arriving to the L.A. distribution center,
and list the most notable deviations from the typi-
cal paths that significantly increase total lead time
before arrival?

2. Present a summarized view of the movements of
electronic goods in the northeast region and list the
possible correlations between the durations spent by
items at quality control points in the manufacturing
facilities and the probability of being returned by
customers.

3. Present a workflow that summarizes the item move-
ment across different transportation facilities for the
year 2006 in Illinois, and contrast path durations
with historic flow information for the same region
in 2005.

The measure of each cell in the flowcube is called a
flowgraph, which is a tree shaped probabilistic work-
flow, where each node records transition probabilities
to other nodes, and the distribution of possible dura-
tions at the node. Additionally nodes keep information
on exceptions to the general transition and duration dis-
tributions given a certain path prefix that has a mini-
mum support (occurs frequently in the data set). For
example, the flowgraph may have a node for the factory
location that says that items can move to either the
warehouse or the store locations with probability 60%
and 40% respectively. But it may indicate that this rule
is violated when items stay for more than 1 week in the
factory in which case they move to the warehouse with
probability 90%.

Computation of the flowgraph for each cell of the
flowcube can be divided into two steps. The first is to
collect the necessary counts to find the transition and
duration probabilities for each node. This can be done
efficiently in a single pass over the paths aggregated in
the cell. The second is to compute the flowgraph excep-
tions, this is a more expensive operation as it requires
computing all frequent path segments in the cell, and
checking if they cause an exception. In this paper we
will focus on the problem of how to compute frequent
path segments for every cell in the flowcube in an effi-
cient manner. The technical contribution of the paper
can be summarized as follows:

1. Shared computation. We explore efficient com-
putation of the flowcube by sharing the computation
of frequent cells and frequent path segments simul-
taneously. Similar to shared computation of mul-
tiple cuboids in BUC-like computation [4], we pro-
pose to compute frequent cells in the flowcube and



frequent path segments aggregated at every interest-
ing abstraction level simultaneously. For example,
in a single scan of the path database we can collect
counts for items at the product level and also at the
product category level. Furthermore, we can collect
counts for path stages with locations at the lowest
abstraction level, and also with locations aggregated
to higher levels. The concrete cuboids that need to
be computed will be determined based on the cube
materialization plan derived from application and
cardinality analysis. Shared computation minimizes
the number of scans of the path database by max-
imizing the amount of information collected during
each scan. In order to efficiently compute frequent
cells and frequent path segments we will develop an
encoding system that transforms the original path
database into a transaction database, where items
encode information on their level along the item di-
mensions, and stages encode information on their
level along the path view abstraction levels.

2. Pruning of the search space using both the
path and item views. To speed up cube compu-
tation, we use pre-counting of high abstraction level
itemsets that will help us prune a large portion of
the candidate space without having to collect their
counts. For example if we detect that the stage shelf
is not frequent in general, we know that for no par-
ticular duration it can be frequent; or if a store lo-
cation is not frequent, no individual location within
the store can be frequent. Similarly, if the clothing
category is not frequent, no particular shirt can be
frequent. In our proposed method we do not incur
extra scans of the path database for pre-counting,
we instead integrate this step with the collection of
counts for a given set of candidates of a given length.

3. Cube compression by removing redundancy
and low support counts. We reduce the size
of the flowcube by exploring two strategies. The
first is to compute only those cells that contain only
a minimum number of paths (iceberg condition).
This makes sense as the flowgraph is a probabilis-
tic model that can be used to conduct statistically
significant analysis only if there is enough data to
support it. The second strategy is to compute only
flowgraphs that are non-redundant given higher ab-
straction level flowgraphs. For example, if the flow
patterns of 2% milk are similar to those of milk (un-
der certain threshold), then by registering just the
high level flowgraph we can infer the one for 2%
milk, i.e., we expect any low level concept to behave
in a similar way to its parents, and only when this
behavior is truly different, we register such informa-
tion in the flowcube.

The rest of the paper is organized as follows. Section
2 presents the structure of the path database. Section 3
introduces the concept of flowgraphs. Section 4, defines
the flowcube, and the organization of the cuboids that
compose it. Section 5, develops an efficient method to
compute frequent patterns for every cell of a flowcube.

Section 6, reports on experimental and performance re-
sults. We discuss related work in Section 7 and conclude
our study in section 8.

2. PATH DATABASE
An RFID implementation usually generates a stream

of data of the form (EPC, location, time) where EPC
is an electronic product code associated with an item,
location is the place were the tag was read by a scan-
ner, and time is when the reading took place. If we
look at all the records associated to a particular item
and sort them on time, they will form a path. After
data cleaning, each path will have stages of the form
(location, time in, time out). In order to study the way
patterns flow through locations we can discard absolute
time and only focus on relative duration, in this case the
stages in each path are of the form (location, duration).
Furthermore, duration may not need to be at the pre-
cision of seconds, we could discretize the value by ag-
gregating it to a higher abstraction level, clustering, or
using any other numerosity reduction method.

A path database is a collection of tuples of the form
〈d1, ..., dm : (l1, t1)...(lk, tk)〉, where each d1, ..., dm are
path independent dimensions (the value does not change
with the path traversed by the item) that describe an
item, e.g., product, manufacturer, price, purchase date.
The pair (li, ti) tells us that the item was at location li
for a duration of ti time units.

Table 1 presents a path database with 2 path inde-
pendent dimensions: product and brand. The nomen-
clature used for stage locations is d for distribution cen-
ter, t for truck, w for warehouse, s for store shelf, c for
store checkout, and f for factory.

id product brand path
1 tennis nike (f, 10)(d, 2)(t, 1)(s, 5)(c, 0)
2 tennis nike (f, 5)(d, 2)(t, 1)(s, 10)(c, 0)
3 sandals nike (f, 10)(d, 1)(t, 2)(s, 5)(c, 0)
4 shirt nike (f, 10)(t, 1)(s, 5)(c, 0)
5 jacket nike (f, 10)(t, 2)(s, 5)(c, 1)
6 jacket nike (f, 10)(t, 1)(w, 5)
7 tennis adidas (f, 5)(d, 2)(t, 2)(s, 20)
8 tennis adidas (f, 5)(d, 2)(t, 3)(s, 10)(d, 5)

Table 1: Path Database

3. FLOWGRAPHS
A duration independent flowgraph is a tree where

each node represents a location and edges correspond
to transitions between locations. All common path pre-
fixes appear in the same branch of the tree. Each transi-
tion has an associated probability, which is the percent-
age of items that took the transition represented by the
edge. For every node we also record a termination prob-
ability, which is the percentage of paths that terminate
at the location associated with the node.

We have several options to incorporate duration infor-
mation into a duration independent flowgraph, the most
direct way is to create nodes for every combination of lo-
cation and duration. This option has the disadvantage
of generating very large flowgraphs. A second option



is to annotate each node in the duration independent
flowgraph with a distribution of possible durations at
the node. This approach keeps the size of the flowgraph
manageable and captures duration information for the
case when (i) the duration distribution between loca-
tions is independent, e.g., the time that milk spends at
the shelf is independent to the time it spent in the store
backroom; and (ii) transition probabilities are indepen-
dent of duration, e.g., the probability of a box of milk
to transition from the shelf to the checkout counter does
not depend on the time it spent at the backroom.

There are cases when conditions (i) and (ii) do not
hold, e.g., a product that spends a long time at a qual-
ity control station may increase its probability of mov-
ing to the return counter location at a retail store. In
order to cover these cases we propose to use a model
which we call flowgraph, that not only records dura-
tion and transition distributions at each node, but that
also stores information on significant deviations in du-
ration and transition probabilities given frequent path
prefixes to the node. A prefix to a node is a sequence
of (location, duration) pairs that appear in the same
branch as the node but before it. The construction of
a flowgraph requires two parameters, ε that is the min-
imum deviation of a duration or transition probability
required to record an exception, and δ the minimum
support required to record a deviation. The purpose of
ε is to record only deviations that are truly interesting
in that they significantly affect the probability distri-
bution induced by the flowgraph; and the purpose of
δ to prevent the exceptions in the flowgraph from be-
ing dominated by statistical noise in the path database.
Figure 3 presents a flowgraph for the path database in
Table 1.

factory
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truck          : 0.35
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Figure 3: Flowgraph

The flowgraph in Figure 3 also registers significant
exceptions to duration and transition probabilities (not
shown in the figure), e.g., the transition probability from
the truck to the warehouse, coming from the factory, is
in general 33%, but that probability is 50% when we
stay for just 1 hour at the truck location. Similarly we
can register exceptions for the distribution of durations
at a location given previous durations, e.g., items in the
distribution center spend 1 hour with probability 20%
and 2 hours with probability 80%, but if an item spent
5 hours at the factory the distribution changes and the
probability of staying for 2 hours in the distribution

center becomes 100%.

Definition 3.1. (Flowgraph) A Flowgraph is a tu-
ple (V, D, T, X), where V is the set of nodes, each node
corresponds to a unique path prefix in the path database.
D is a set of multinomial distributions, one per node,
each assigns a probability to each distinct duration at a
node. T is a set of multinomial distributions, one per
node, each assigns a probability to each possible transi-
tion from the node to every other node, including the
termination probability. X is the set of exceptions to
the transition and duration distributions for each node.

Computing a flowgraph can be done efficiently by: (1)
constructing a prefix tree for the path database (2) an-
notating each node with duration and transition proba-
bilities (3) mining the path database for frequent paths
with minimum support δ, and checking if those paths
create exceptions that deviate by more than ε from the
general probability. Steps (1) and (2) can be done with
a single scan of the path database, and for step (3) we
can use any existing frequent pattern mining algorithm.

4. FLOWCUBE
The next step we take in our model is to combine

flowgraph analysis with the power of OLAP type op-
erations such as drill-down and roll-up. It may be in-
teresting for example to look at the evolution of the
flowgraphs for a certain product category over a pe-
riod of time to detect how a change in suppliers may
have affected the probability of returns for a particu-
lar item. We could also use multidimensional analy-
sis to compare the speed at which products from two
different manufacturers move through the system, and
use that information to improve inventory management
policies. Furthermore, it may be interesting to look
at paths traversed by the items from different perspec-
tives. A transportation manager may want to look at
flowgraphs that provide great detail on truck, distribu-
tion centers, and sorting facilities while ignoring most
other locations. A store manager on the other hand may
be more interested in looking at movements from back-
rooms, to shelfs, checkout counters, and return counters
and largely ignore other locations.

In this section we will introduce the concept of a
flowcube, which is a data cube computed on an RFID
path database, where each cell summarizes commod-
ity flows at at a given abstraction level of the path in-
dependent dimensions, and path stages. The measure
recorded in each cell of the flowcube is a flowgraph com-
puted on the paths belonging to the cell.

In the next sections we will explore in detail the differ-
ent components of a flowcube. We will first introduce
the concepts of item abstraction lattice and path ab-
straction lattice, which are important to give a more
precise definition of the cuboid structure of a flowcube.
We will then study the computational challenges of us-
ing flowgraphs as measures. Finally we introduce the
concepts of non-redundant flowcubes, and iceberg flowcubes
as a way to reduce the size of the model.

4.1 Abstraction Lattice



Each dimension in the flow cube can have an associ-
ated concept hierarchy. A concept hierarchy is a tree
where nodes correspond to concepts, and edges corre-
spond to is-a relationships between concepts. The most
concrete concepts reside at the leafs of the tree, while
the most general concept, denoted ‘*’, resides at the
apex of the tree and represents any concept. The level
of abstraction of a concept in the hierarchy is the level
at which the concept is located in the tree.
Item Lattice. The abstraction level of the items in the
path database can be represented by the tuple (l1, ..., lm),
where li is the abstraction level of the path independent
dimension di. For our running example we can say that
the items in the path database presented reside at the
lowest abstraction level. The set of all item abstraction
levels forms a lattice. A node n1 is higher in the lat-
tice than a node n2, denoted n1 ¹ n2 if the levels all
dimensions in n1 are smaller or equal to the ones in n2.

Table 2 shows the path independent dimension from
Table 1 with the product dimension aggregated one level
higher in its concept hierarchy. The “path ids” column
lists the paths in the cell, each number corresponds to
the path id in Table 1. We can compute a flowgraph on
each cell in Table 2. Figure 4 presents the flowgraph for
the cell (outerwear, nike).

product brand path ids
shoes nike 1,2,3
shoes adidas 7,8
outerwear nike 4,5,6

Table 2: Aggregated Path Database
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Figure 4: Flowgraph for cell (outerwear, nike,
99)

Path Lattice. In the same way that items can be as-
sociated with an abstraction level, path stages will also
reside at some level of the location and duration con-
cept hierarchies. Figure 5 presents an example concept
hierarchy for the location dimension of the path stages.
The shadowed nodes are the concepts that are impor-
tant for analysis; in this case the data analyst may be a
transportation manager that is interesting in seeing the
transportation locations at a full level of detail, while
aggregating store and factory locations to a higher level.
More formally, the path abstraction level is defined by
the tuple (〈v1, v2, ..., vk〉, tl) where each vi is a node in
the location concept hierarchy, and tl the level in the
time concept hierarchy. Analogously to the item ab-
straction lattice definition, we can define a path abstrac-

tion lattice.
In our running example, assuming that time is at the

hour level, the path abstraction level corresponding to
Figure 5 is (〈dist. center, truck, warehouse, factory,
store〉 ,hour).

Transportation

Truck

StoreFactory

*

Dist. Center Backroom Shelf CheckoutWarehouse

Figure 5: Location Concept Hierarchy

We aggregate a path to abstraction level (〈v1, v2,
..., vk〉, tl) in two steps. First, we aggregate the loca-
tion in each stage to its corresponding node vi, and
we aggregate its duration to the level tl. Second, we
merge consecutive locations that have been aggregated
to the same concept level. The merging of consecutive
locations requires us to define a new duration for the
merged stage. The computation of the merged duration
would depend on the application, it could be as simple
as just adding the individual durations, or it could in-
volve some form of numerosity reduction based on clus-
tering or other well known methods.

Aggregation along the path abstraction lattice is unique
to flowcubes and is quite different to the type of aggre-
gation performed in a regular data cube. In a data cube,
an aggregated cell contains a measure on the subset of
tuples from the fact table that share the same values
on every aggregated dimension. When we do path ag-
gregation, the dimensions from the fact table remain
unchanged, but it is the measure of the cell itself which
changes. This distinct property requires us to develop
new methods to construct a flowcube that has aggrega-
tion for both item and path dimensions.

Definition 4.1 (Flowcube). A flowcube is a col-
lection of cuboids. A cuboid is a grouping of entries in
the fact table into cells, such that each cell shares the
same values on the item dimensions aggregated to an
item abstraction level Il; and the paths in the cell have
been aggregated to a path abstraction level Pl. The mea-
sure of a cell is a flowgraph computed on the paths in the
cell. A cuboid can be characterized by the pair 〈Il, Pl〉.
4.2 Measure computation

We can divide a flowgraph into two components, the
first is the duration and transition probability distribu-
tions, the second is the set of exceptions. In this section
we will show that while the first component is an al-
gebraic measure, and thus can be computed efficiently,
the second component is a holistic measure and requires
special treatment.

Assume that we have a dataset S that has been par-
titioned into k subsets s1, ..., sk such that S =

S
i si and

si∩sj = φ for all i 6= j. We say that a measure, or func-
tion, is algebraic if the measure for S can be computed



by collecting M (positive bounded integer) values from
each subset si. For example, average is distributive as
we can collect count() and sum() (M = 2) from each
subset to compute the global average. A holistic mea-
sure on the other hand is one where there is no constant
bound on the number of values that need to be collected
from each subset in order to compute the function for
S. Median is an example of a holistic function, as each
subset will need to provide its entire set of values in
order to compute the global median.

Lemma 4.2. The duration and transition distributions
of a flowgraph are algebraic measures.

Proof Sketch. Each node n in the flowgraph contains
a duration probability distribution d and a transition
probability distribution t. For each node in the flow-
graph, d(ti) = count(ti)/

Pk
i=1 count(ti), where d(ti) is

the probability of duration ti, count(ti) is the number
of items that stayed at the node for duration ti and k is
the number of distinct durations at the node. We can
compute d for each node in a flowgraph whose dataset
has been partitioned into subsets, by collecting the fol-
lowing k values count(t1), ..., count(tk). Similarly we
can argue that the transition distribution t can be com-
puted by collecting a fixed number of transition counts
from each subset. Given that the number of nodes and
distinct durations per node in a flowgraph is fixed (after
numerosity reduction), we can collect a bounded num-
ber of counts from each subset to compute the duration
and transition distributions for the flowgraph.

The implication of lemma 4.2 is that we can compute
a flowcube efficiently by constructing high level flow-
graphs from already materialized low level ones without
having to go to the path database.

Lemma 4.3. The set of exceptions in a flowgraph is
a holistic measure.

Proof Sketch. The flowgraph exceptions are computed
on the frequent itemsets in the collection of paths ag-
gregated in the cell, thus proving that a function that
returns the frequent itemsets for a cell is not algebraic
is sufficient. Assume that the set S is the union of
s1, ..., sn, and that the sets f1, ..., fn are the frequent
itemsets for each subset si. We need to compute F the
frequent itemsets for S, assume that f j

i is frequent pat-

tern j in set i, in order to check if f j
i is frequent in

S we need to collect its count on every subset sk, and
thus we need every subset to provide counts for every
frequent pattern on any other subset, this number is
clearly unbounded as it depends on the characteristics
of each data set.

The implication of lemma 4.3 is that we can not com-
pute high level flowgraphs from low level ones by just
passing a fixed amount of information between the lev-
els. But we can still mine the frequent patterns required
to determine exceptions in each cell in a very efficient
way by entirely avoiding the level by level computation
approach and instead using a novel shared computation
method that simultaneously finds frequent patterns for
cuboids at every level of abstraction. In section 5 we
will develop the mining method in detail.

4.3 Flowgraph Redundancy
The flowgraph registered for a given cell in a flowcube

may not provide new information on the characteristics
of the data in the cell, if the cells at a higher abstraction
level on the item lattice, and the same abstraction level
on the path lattice, can be used to derive the flowgraph
in the cell. For example, if we have a flowgraph G1

for milk, and a flowgraph G2 from milk 2% (milk is
an ancestor of milk 2% in the item abstraction lattice),
and G1 = G2 we see that G2 is redundant, as it can be
inferred from G1.

Before we give a more formal definition of redundancy
we need a way to determine the similarity of two flow-
graphs. A similarity metric between two flowgraphs is
a function ϕ : G1 × G2 → R. Informally the value
of ϕ(G1, G2) is large if the G1 and G2 are similar and
small otherwise. There are many options for ϕ and the
one to use should use depends on the particular RFID
application semantics. One possible funtion is to use
the KL-Divergence of the probability distributions in-
duced by two flowgraphs. But other similarity metrics,
based for example on probabilistic deterministic finite
automaton (PDFA) distance could be used. Note that
we do not require ϕ to be a real metric in the mathe-
matical sense, in that the triangle inequality does not
necessarily need to hold.

Definition 4.4 (Redundant flowgraph). Let G
be a flowgraph for cell c, let p1, ..., pn be all the cells in
the item lattice that are a parent of c and that reside in a
cuboid at the same level in the path lattice as c’s cuboid.
Let G1, ..., Gn be the flowgraphs for cells p1, ..., pn, let
ϕ be a flowgraph similarity metric. We say that G is
redundant if ϕ(G, Gi) > τ for all i, where τ is the sim-
ilarity threshold.

A flowcube that contains only cells with non-redundant
flowgraphs is called a non-redundant flowcube. A non-
redundant flowcube can provide significant space sav-
ings when compared to a complete flowcube, but more
interestingly, it provides important insight into the re-
lationship of flow patterns from high to low levels of ab-
straction, and can facilitate the discovery of exceptions
in multi-dimensional space. For example, using a non-
redundant flowcube we can quickly determine that milk
from every manufacturer has very similar flow patterns,
except for the milk from farm A which has significant
differences. Using this information the data analyst can
drill down and slice on farm A to determine what factors
make its flowgraph different.

4.4 Iceberg Flowcube
A flowgraph is a statistical model that describes the

flow behavior of objects given a collection of paths. If
the data set on which the flowgraph is computed is very
small, the flowgraph may not be useful in conducting
data analysis. Each probability in the model will be
supported by such a small number of observations and it
may not be an accurate estimate of the true probability.
In order to minimize this problem, we will materialize
only cells in the flowcube that contain at least δ paths
(minimum support). For example, if we set the mini-



mum support to 2, the cell (shirt, ∗) from Table 1 will
not be materialized as it contains only a single path.

Definition 4.5 (Iceberg flowcube). A flowcube
that contains only cells with a path count larger than δ
is called an Iceberg flowcube.

Iceberg flowcubes can be computed efficiently by us-
ing apriori pruning of infrequent cells. We can materi-
alize the cube from low abstraction levels to high ab-
straction ones. If at some point a low level cell is not
frequent, we do not need to check the frequency of any
specialization of the cell. The algorithm we develop in
the next section will make extensive use of this property
to speed up the computation of the flowcube.

5. ALGORITHMS
In this section we will develop a method to compute

a non-redundant iceberg flowcube given an input path
database. The problem of flowcube construction can
be divided into two parts. The first is to compute the
flowgraph for each frequent cell in the cube, and the
second is to prune uninteresting cells given higher ab-
straction level cells. The second problem can be solved
once the flowcube has been materialized, by traversing
the cuboid lattice from low to high abstraction levels,
while pruning cells that are found to be redundant given
the parents. In the rest of this paper we will focus on
solving the first problem.

The key computational challenge in materializing a
flowcube is to find the set of frequent path segments, ag-
gregated at every interesting abstraction level, for every
cell that appears frequently in the path database. Once
we have the counts for every frequent pattern in a cell
determining exceptions can be done efficiently by just
checking if counts of these patterns change the duration
or transition probability distributions for each node.
The problem of mining frequent patterns in the flowcube
is very expensive as we need to mine frequent paths at
every cell, and the number of cells is exponential in the
number of item and path dimensions. Flowcube mate-
rialization combines two of the most expensive methods
in data mining, cube computation, and frequent pat-
tern mining. The method that we develop in this sec-
tion solves these two problems with a modified version
of the Apriori algorithm [3], by collecting frequent pat-
tern counts at every interesting level of the item and
path abstraction lattices simultaneously, while exploit-
ing cross-pruning opportunities between these two lat-
tices to reduce the search space as early as possible.
To further improve performance our algorithm will use
partial materialization to restrict the set of cuboids to
compute, to those most useful to each particular ap-
plication. The algorithm is based on the following key
ideas:
Construction of a transaction database. In order
to run a frequent pattern algorithm on both the item
and path dimensions at every abstraction level, we need
to transform the original path database into a transac-
tion database. Values in the path database need to be
transformed into items that encode their concept hierar-
chy information and thus facilitate efficient multi-level

mining. For example, the value “jacket” for the prod-
uct dimension in Table 1, can be encoded as “112”, the
first digit indicates that it is a value of the first path
independent dimension, the second digit indicates that
is of type outerwear, and the third digit tells us that it
is a jacket (for brevity we omit the encoding for prod-
uct category as all the products in our example belong
to the same category: clothing). Path stages require a
slightly different encoding, in addition to recording the
concept hierarchy for the location and time dimensions
for the stage, each stage should also record the path
prefix leading to the stage so that we can do multi-level
path aggregation. For example the stage (t,1) in the
first path of the path database in Table 1 can be en-
coded as (fdt,10), to mean that it is the third stage in
the path: factory → dist. center → truck, and that it
has a duration of 10 time units.

Table 3 presents the transformed database resulting
from the path database from Table 1.

TID Items
1 {121,211,(f,10),(fd,2),(fdt,1),(fdts,5),(fdtsc,0)}
2 {121,211,(f,5),(fd,2),(fdt,1),(fdts,10),(fdtsc,0)}
3 {122,211,(f,10),(fd,1),(fdt,2),(fdts,5),(fdtsc,0)}
4 {111,211,(f,10),(ft,1),(fts,5),(ftsc,0)}
5 {112,211,(f,10),(ft,2),(fts,5),(ftsc,1)}
6 {112,211,(f,10),(ft,1),(ftw,5)}
7 {121,221,(f,5),(fd,2),(fdt,2),(fdts,20)}
8 {121,221,(f,5),(fd,2),(fdt,3),(fdts,10),(fdtsd,5)}

Table 3: Transformed transaction database

Shared counting of frequent patterns. In order to
minimize the number of scans of the transformed trans-
action database we share the counting of frequent pat-
terns at every abstraction level in a single scan. Every
item that we encounter in a transaction contributes to
the support of all of its ancestors on either the item or
path lattices. For example, the item 112 (jacket) con-
tributes to its own support and the support of its an-
cestors, namely, 11* (outerwear) and 1** (we will later
show that this ancestor is not really needed). Similarly
an item representing a path stage contributes to the sup-
port of all of its ancestors along the path lattice. For
example, the path stage (fdts,10) will support its own
item and items such as (fdts,*), (fTs,10) and (fTs,*),
where f stands for factory, d for distribution center, t
for truck, s for shelf, and T for transportation (T is the
parent of d, and t, in the location concept hierarchy).

Shared counting processes patterns from short to long.
In the first scan of the database we can collect all the
patterns of length 1, at every abstraction level in the
item and path lattices. In the second scan we check
the frequency of candidate patterns of length 2 (formed
by joining frequent patterns of length 1). We continue
this process until no more frequent patterns are found.
Table 4 presents a portion of the frequent patterns of
length 1 and length 2 for the transformed path database
of Table 3.
Pruning of infrequent candidates. When we gener-
ate candidates of length k+1 based on frequent patterns
of length k we can apply several optimization techniques
to prune large portions of the candidate space:



Length 1 frequent
Itemset Support
{121} 5
{12*} 5
{(f,10)} 5
{(f,*)} 8
{(fd,2)} 4
... ...

Length 2 frequent
Itemset Support
{12*,211} 3
{12*,21*} 3
{211,(f,10)} 4
{(f,5)(fd,2)} 3
{(f,*),(fd,*)} 3
... ...

Table 4: Frequent Itemsets

• Precounting of frequent itemsets at high lev-
els of abstraction along the item and path
lattices. We can take advantage of the fact that
infrequent itemsets at high abstraction levels of the
item and path lattice can not be frequent at low
abstraction levels. We can implement this strat-
egy by, for example, counting frequent patterns of
length 2 at a high abstraction level while we scan
the database to find the frequent patterns of length
1. A more general precounting strategy could be to
count high abstraction level patterns of length k +1
when counting the support of length k patterns.

• Pruning of candidates containing two unre-
lated stages. Given our stage encoding, we can
quickly determine if two stages can really appear in
a the same path, and prune all those candidates that
contain stages that can not appear together. For ex-
ample we know that the stages (fd, 2) and (fts, 5)
can never appear in the same path, and thus should
not be generated as a candidate.

• Pruning of path independent dimensions ag-
gregated to the highest abstraction level. We
do not need to collect counts for an item such as
1**, this item really mean any value for dimension
1; and its count will always be the same as the size
of the transaction table. These type of items can be
removed from the transaction database.

• Pruning of items and their ancestors in the
same transaction. This optimization was intro-
duced in [17] and is useful for our problem. We
do not need to count an item and any of its an-
cestors in the same candidate as we know that the
ancestor will always appear with the item. This op-
timization can be applied to both path independent
dimension values, and path stages. For example we
should not consider the candidate itemset {121, 12∗}
as its count will be the same of the itemset {121}.

Partial Materialization. Even after applying all the
optimizations outlined above, and removing infrequent
and redundant cells the size of of flowcube can still be
very large in the cases when we have a high dimensional
path database. Under such conditions we can use the
techniques of partial materialization developed for tra-
ditional data cubes [12, 11, 16].

One strategy that seems especially well suited to our
problem is that of partial materialization described in
[11], which suggests the computation of a layer of cuboids
at a minimum abstraction level that is interesting to
users, a layer at an observation level where most anal-
ysis will take place, and the materialization of a few

cuboids along popular paths in between these two lay-
ers.

5.1 Shared algorithm
Based on the optimization techniques introduced in

the previous section, we propose algorithm Shared which
is a modified version of the Apriori algorithm [3] used
to mine frequent itemsets. Shared simultaneously com-
putes the frequent cells, and the frequent path segments
aggregated at every interesting abstraction level along
the item and path lattices. The output of the algorithm
can be used to compute the flowgraph for every cell that
passes the minimum support threshold in the flowcube.

Algorithm 1 Shared

Input: A path database D, a minimum support δ
Output: Frequent cells and frequent path segments in
every cell
Method:

1: In one scan of the path database compute the trans-
formed path database into D′, collect frequent items
of length 1 into L1, and pre-count patterns of length
> 1 at high abstraction levels into P1.

2: for k = 2,Lk−1 6= φ,k + + do
3: generate Ck by joining frequent patterns in Lk−1

4: Remove from Ck candidates that are infrequent
given the pre-counted set Pk−1, remove candi-
dates that include stages that can not be linked,
and remove candidates that contain an item and
its ancestor.

5: for every transaction t in D′ do
6: increment the count of candidates in Ck sup-

ported by t, and collect the counts of high ab-
straction level patterns of length > k into Pk

7: end for
8: Lk = frequent items in Ck

9: end for
10: Return

S
k Lk.

5.2 Cubing Based Algorithm
A natural competitor to the Shared algorithm is an

iceberg cubing algorithm that computes only cells that
pass the iceberg condition on the item dimensions, and
that for each such cell calls a frequent pattern mining
algorithm to find frequent path segments in the cell.
The precise cubing algorithm used in this problem is not
critical, as long as the cube computation order is from
high abstraction level to low level, because such order
enables early pruning of infrequent portions of the cube.
Examples of algorithms that fall into this category are
BUC [4] and Star Cubing [20].

Algorithm 2 takes advantage of pruning opportuni-
ties based on the path independent dimensions, i.e., if
it detects that a certain value for a given dimension is
infrequent, it will not check that value combined with
another dimension because it is necessarily infrequent.
What the algorithm misses is the ability to do pruning
based on the path abstraction lattice. It will not, for
example, detect that a certain path stage is infrequent
in the highest abstraction level cuboid and thus will be



Algorithm 2 Cubing

Input: A path database D, a minimum support δ
Output: Frequent cells and frequent path segments in
every cell
Method:

1: Divide D into two components Di, which contains
the path independent dimensions, and Dp which
contains the paths.

2: Transform Dp into a transaction database by en-
coding path stages into items, and assign to each
transaction a unique identifier.

3: Compute the iceberg cube C on Di, use as measure
the list of transaction identifiers aggregated in the
cell.

4: for each cell ci in C do
5: cp

i = read the transactions aggregated in the cell.

6: cf
i = find frequent patterns in cp

i by using a fre-
quent pattern mining algorithm

7: end for
8: return

S
i cf

i .

infrequent in every other cuboid, the algorithm will re-
peatedly generate that path stage as a candidate and
check its support just to find that it is infrequent every
single time. Another disadvantage of the cubing based
algorithm is that it has to keep long lists of transac-
tion identifiers as measures for the cells, when the lists
are long, the input output costs of reading them can
be significant. In our experiments even for moderately
sized data sets these lists where much larger than the
path database itself. With the algorithm shared, we
only record frequent patterns, and thus our input out-
put costs are generally smaller.

6. EXPERIMENTAL EVALUATION
In this section, we perform a thorough analysis our

proposed algorithm (shared) and compare its perfor-
mance against a baseline algorithm (basic), and against
the cubing based algorithm (cubing) presented in the
previous section. All experiments were implemented us-
ing C++ and were conducted on an Intel Pentium IV
2.4GHz System with 1GB of RAM. The system ran De-
bian Sarge with the 2.6.13.4 kernel and gcc 4.0.2.

6.1 Data Synthesis
The path databases used for our experiments were

generated using a synthetic path generator that simu-
lates the movement of items in a retail operation. We
first generate the set of all valid sequences of locations
that an item can take through the system. Each location
in a sequence has an associated concept hierarchy with
2 levels of abstraction. The number of distinct values
and skew per level are varied to change the distribution
of frequent path segments. The generation of each entry
in the path database is done in two steps. We first gen-
erate values for the path independent dimensions. Each
dimension has a 3 level concept hierarchy. We vary the
number of distinct values and the skew for each level to
change the distribution of frequent cells. After we have
selected the values for the path independent dimensions,
we randomly select a valid location sequence from the

list of possible ones, and generate a path by assigning
a random duration to each location. The values for the
levels in the concept hierarchies for path independent
dimensions, stage locations, and stage durations, are all
drawn from a Zipf distribution [21] with varying α to
simulate different degrees of data skew.

For the experiments we compute frequent patterns
for every cell at every abstraction level of the path in-
dependent dimensions, and for path stages we aggregate
locations to the level present in the path database and
one level higher, and we aggregate durations to the level
present in the path database and to the any (*) level,
for a total of 4 path abstraction levels.

In most of the experiments we compare three meth-
ods: Shared, Cubing, and Basic. Shared is the algo-
rithm that we propose in section 5.1 and that does si-
multaneous mining of frequent cells and frequent path
segments at all abstraction levels. For shared we imple-
mented pre-counting of frequent patterns of length 2 at
abstraction level 2, and pre-counting of path stages with
duration aggregated to the ’*’ level. Cubing is an im-
plementation of the algorithm described in section 5.2,
we use a modified version of BUC [4] to compute the
iceberg cube on the path independent dimensions and
then called Apriori [3] to mine frequent path segments in
each cell. Basic is the same algorithm as Shared except
that we do not perform any candidate pruning based on
the optimizations outlined in the previous section. In
the figures we will use the following notation to repre-
sent different data set parameters N for the number of
records, δ for minimum support, and d for the number
of path independent dimensions.

6.2 Path database size
In this experiment we look at the runtime perfor-

mance of the three algorithms when varying the size of
path database, from 100,000 paths to 1,000,000 paths
(disk size of 6 megabytes to 65 megabytes respectively).
In Figure 6 we can see that the performance of shared
and cubing is quite close for smaller data sets but as
we increase the number of paths the runtime of shared
increases with a smaller slope than that of cubing. This
may be due to the fact that as we increase the number
of paths the data set becomes denser BUC slows down.
Another influencing factor in the difference in slopes is
that as the data sets become denser cubing needs to
invoke the frequent pattern mining algorithm for many
more cells, each with a larger number of paths. We were
able to run the basic algorithm for 100,000 and 200,000
paths, for other values the number of candidates was so
large that they could not fit into memory.

6.3 Minimum Support
In this experiment we constructed a path database

with 100,000 paths and 5 path independent dimensions.
We varied the minimum support from 0.3% to 2.0%.
In Figure 7 we can see that shared outperforms cubing
and basic. As we increase minimum support the perfor-
mance of all the algorithms improves as expected. Basic
improves faster that the other two, this is due to the fact
that fewer candidates are generated at higher support
levels, and thus optimizations based on candidate prun-
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Figure 6: Database Size (δ = 0.01, d = 5)

ing become less critical. For every support level we can
see that shared outperforms cubing, but what is more
important we see that shared improves its performance
faster than cubing. The reason is that as we increase
support shared will quickly prune large portions of the
path space, while cubing will repeatedly check this por-
tions for every cell it finds to be frequent.
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Figure 7: Minimum Support (N = 100, 000, d = 5)

6.4 Number of Dimensions
In this experiment we kept the number of paths con-

stant at 100,000 and the support at 1%, and varied the
number of dimensions from 2 to 10. The datasets used
for this experiment were quite sparse to prevent the
number of frequent cells to explode at higher dimen-
sion cuboids. The sparse nature of the datasets makes
all the algorithms achieve a similar performance level.
We can see in Figure 8 that both shared and cubing
are able to prune large portions of the cube space very
soon, and thus performance was comparable. Similarly
basic was quite efficient as the number of candidates
was small and optimizations based on candidate prun-
ing did not make a big difference given that the number
of candidates was small to begin with.
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δ = 0.01)

6.5 Density of the path independent dimen-
sions

For this experiment we created three datasets with
varying numbers of distinct values in 5 path indepen-
dent dimensions. Dataset a had 2, 2, and 5 distinct
values per level in every dimension; dataset b has 4, 4,
and 6; dataset c has 5, 5, and 10. In Figure 9 we can see
that as we increase the number of distinct items, data
sparsity increases, and fewer frequent cells and path seg-
ments are found, which significantly improves the per-
formance of all three algorithms. Due to the very large
number of candidates we could not run the basic algo-
rithm for dataset a.
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6.6 Density of the paths
In this experiment we kept the density of the path in-

dependent dimensions constant and varied the density
of the path stages by varying the number of distinct lo-
cation sequences 10 to 150. We can see in Figure 10
that for small numbers of distinct path sequences, we
have many frequent path fragments and thus mining is
more expensive. But what is more important is that as



the path database becomes denser shared gains a very
significant advantage over cubing. The reason is that
in a few scans of the database shared is able to detect
every frequent path segment at every abstraction level,
while cubing needs to do find frequent path segments
independently for each frequent cell, and given the high
density of paths, mining of frequent path segments is an
expensive operation. We could not run the basic algo-
rithm on this experiment as the number of candidates
exploded with dense paths.
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6.7 Pruning Power
This is experiment we show the effectiveness of the

optimizations described in section 5 to prune unpromis-
ing candidates from consideration in the mining pro-
cess. We compare the number of candidates that the
basic and shared algorithms need to count for each pat-
tern length. We can see in Figure 11 that shared is able
to prune a very significant number of candidates from
consideration. Basic on the other hand has to collect
counts for a very large number of patterns that end up
being infrequent, this increases the memory usage and
slows down the algorithm. We can also see in the fig-
ure that shared considers patterns only up to length 8,
while basic considers patterns all the way to length 12.
This is because basic is considering long transactions
that include items and their ancestors.

In this section we have verified that the ideas of shared
computation, simultaneous mining of frequent patterns,
and pruning techniques based on both item and path
abstraction lattices are effective in practice and provide
significant cost savings versus alternative algorithms.

7. RELATED WORK
RFID technology has been extensively studied from

mostly two distinct areas: the electronics and radio
communication technologies required to construct read-
ers and tags [7]; and the software architecture required
to securely collect and manage online information re-
lated to tags [14, 15]. More recently a third line of re-
search dealing with mining of RFID data has emerged.
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[6] introduces the idea of creating a warehouse for RFID
data, but does not go into the data structure or algo-
rithmic details; [8] presents a concrete warehouse archi-
tecture for RFID data; their model exploits character-
istics of item movements to create a summary of large
RFID data sets, but this summary is based on scalar
aggregates and does not handle the concept complex
measures such as flowgraphs.

Induction of flowgraphs from RFID data sets, shares
many characteristics with the problem of process min-
ing [19]. Workflow induction, may be the area closest
to our work, it studies the problem of discovering the
structure of a workflow from event logs represented by
a list of tuples of the form (casei, activityj) sorted by
the time of occurrence; casei refers to the instance of
the process, and activityj to the activity executed. [2]
first introduced the problem of process mining and pro-
posed a method to discover workflow structure, but for
the most part their methods assumes no duplicate ac-
tivities in the workflow, and does not take activity du-
ration into account, which is a very important aspect
of RFID data. Another area of research very closed to
flowgraph construction is that of grammar induction [5,
18], the idea is to take as input a set of strings and
infer the probabilistic deterministic finite state automa-
ton (PDFA) that generated the strings. This approach
differs from ours in that it does not consider exceptions
to transition probability distributions, or duration dis-
tributions at the nodes.

There are several areas of data mining very related to
our work. Data cubes were introduced in [1] and tech-
niques to compute iceberg cubes efficiently studied in
[4, 10, 20]. Flowcubes differ from this line of research
in that our measure is a complex probabilistic model
and not just an scalar aggregate such as count or sum,
and that our aggregates deal with two interrelated ab-
straction lattices, one for item dimensions and another
for path dimensions. The computation of frequent pat-
terns in large data sets was introduced by [3]; [17] and
[9] study the problem of mining multi-level association
rules, and [13] deals with mining frequent sequences in a
multidimensional space. We borrow ideas from this line



of work, such as Apriori pruning and concept hierarchy
encoding, but we also differ significantly as we develop
techniques that deal with paths, which are not present
in their data models, and our algorithms are designed
to handle both item and path abstraction lattices.

8. CONCLUSIONS
We introduced the problem of constructing a flowcube

for a large collection of paths. The flowcube is data
cube model useful in analyzing item flows in an RFID
application by summarizing item paths along the di-
mensions that describe the items, and the dimensions
that describe the path stages. We also introduced the
flowgraph, a probabilistic workflow model that is used
as the cell measure in the flowcube, and that is a concise
representation of general flows trends and significant de-
viations from the trends. Previous work on management
of RFID data did not consider the probabilistic work-
flow view of commodity flows, and did not study how
to aggregate such flows in a data cube.

The flowcube is a very useful tool in providing guid-
ance to users in their analysis process. It facilitates the
discovery of trends in the movement of items at differ-
ent abstraction levels. It also provides views of the data
that are tailored to the needs of each user. The flowcube
is particularly well suited for the discovery of exceptions
in flow trends, as it only stores non-redundant flow-
graphs that by definition deviate from their ancestor
flowgraphs.

We developed an efficient method to compute the
flowcube based on the ideas of shared computation of
frequent flow patterns at every level of abstraction of
the item and path lattices. Pruning of the search space
by taking taking advantage of the relation between the
path and the item view on RFID data. Compression of
the cube by the removal of infrequent cells, and redun-
dant flowgraphs. And partial materialization of high
dimensional flowcubes based on popular cuboids.

Through an empirical study we verify the feasibility of
our model and materialization methods. We compared
the performance of our proposed algorithm with the per-
formance of two competing algorithms and showed that
our solution achieves better performance than those meth-
ods under a variety data sizes, data distributions, and
minimum support considerations.
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